
1

CMSC335

Web Application Development with JavaScript

JavaScript2
Department of Computer Science

University of MD, College Park

Slides material developed by Ilchul Yoon, Nelson Padua-Perez

2

Type Conversions

• In JavaScript you don’t specify the type of variables
• Most of the time implicit transformations will take care of

transforming a value to the expected one
• Example:

let age = 10;
let personsInfo = “John Age: “ + age;

• Mechanism to transform values:
– Converting number to string

» let stringValue = String(number);
– Converting string to number

» let number = Number(stringValue);
» let number = parseInt(stringValue);
» let number = parseFloat(stringValue);

3

Comparisons

• You can compare values by using the following operators
=== Return true if the values are equal, false otherwise
(e.g., x === y)

!== Returns true if the values are different, false otherwise
(e.g., x != y)

• == and != Not as strict as previous equality operators
• Relational Operators

< Less than
> Greater than
<= Less than or equal
>= Greater than or equal

4

Dialog Boxes – Basic Input/Output
• document.writeln()/document.write() - generates page content
• We can perform input and output via dialog boxes
• Input via prompt

– Returns a string
– If you need to perform a mathematical computation you might need to

explicitly convert the value read into a number
• Example: InputOutput.html

– We can define several variables at the same time
– prompt is a function that displays a dialog box with the specified title. It

can be used to read any data. You can specify default value after the
title

– You can read numbers and strings via prompt
• window.alert() - function used to display a message in a dialog box
• window.open() - Generates a pop-up with the specified website
• Example: Network.html

– You have to execute twice; once to allow pop-ups; second time the
actual program is executed

5

Control Structures

• Constructs having syntax /semantic similar to Java
– while, do while, for loops
– if statement
– cascaded if statements
– break statement
– switch statement

• Example: SqrTable.html

6

Strict Mode

• Allows for error checking both globally or within a function
• Use the strict mode pragma

– “use strict”;
• If pragma used outside of a function, it applies to all the script
• It can appear in a function

function computeAvg() {
“use strict”;

}
• Variables have to be declared first
• Cannot use reserved words (interface, package, private, ...)
• Example: Strict.html

7

Console

• Allow us to view JavaScript errors and user messages
• console object functions

– log - General message
– info - Informational message
– error - Error message
– warn - Warning message
– table - Displays array in tabular form

• In Chrome
– View à Developers à JavaScript console
– Different icons are used for different console functions
– You can practice JavaScript by typing code at the console

• Example: ConsoleEx.html

8

Built-in Structural Types

• Object - generic object
• Array - list of values (numerically indexed)
• Function - (non-data structure)
• Error - runtime error
• Date - date/time
• RegExp - regular expression
• Many built-in types have a literal form that enables you to define

a value without explicitly creating an object (using new)
• The typical function definition is based on a literal form

9

Primitive Wrapper Types

• JavaScript promptly coerces between primitives and objects
when a property of the type is accessed

• Three wrapper types: Boolean, String, and Number
• Primitive wrapper types simplify working with primitives
• Wrapper types are automatically created when needed
• Example: Wrapper.html, WrapperType.html

10

Global Object

• ECMAScript defines a global object
• In JavaScript, window implements the global object

– Recently globalThis was added to the language, as a standardized
name for a global object

• All functions and variables defined globally become part of the
global object

– Try defining a variable and see if you can access it using the window object

• Some functions that are part of the Global object
– isNaN()
– parseFloat()
– parseInt()
– eval() : evaluates JS code represented as a string
– isFinite()

Examples typed in
Chrome JS Console

11

Global Object

• Some properties that are part of the Global object
– NaN (also part of Number)
– undefined
– Object : Constructor for Object
– Array : Constructor for Array
– Function : Constructor for Function
– Number : Constructor for Number
– String : Constructor for String
– Date : Constructor for Date
– Error : Constructor for Error
– RegExp : Constructor for RegExp

• ECMAScript also defines the Math object

Examples typed in
Chrome JS Console

12

Functions

• Functions are objects
• The name of a function is a reference value
• Functions can be passed and returned from other functions
• Functions can be defined inside of other functions
• Function declaration

function name (<comma-separated list of parameters>) {
statements

}

13

Functions

• Functions are invoked by using the () operator
• Don’t use var/let/const for parameters (e.g., function print(x, y))
• Parameters are passed by value
• There is no mandatory main function
• Returning values via return

14

Three Approaches to Define Functions

• Function declaration
– Read and available before any code is executed
– When a function is hoisted it is internally moved to the

beginning of the current scope. So…
» Hoisting allows calling the function before its declaration

(i.e., functions can appear in any order)
• Function expression

– let myFunction1 = function(x, y) { return x * y };
• Using Function constructor

– let myFunction2 = new Function("x", "y", "return x * y");
• Arrow Functions (lamba expressions)

– let myFunction3 = (x, y) => x * y;
• Function overloading is not possible as second function definition

will redefine the first one
• Example: DefiningFunctions.html, FunctionsAsData.html

15

One-Dimensional Arrays

• Array : Collection of values that can be treated as a unit or individually
– A special type of objects

var a = new Array(4);

• Indexing : access an element using []
– First element associated with index 0 (e.g., a[0])

• An element of an array can be of any type and an array can hold
different types of elements

• The length property represents the length of the array (e.g., a.length)
• Try printing the contents of an array by using alert

16

Definition of One-Dim Arrays

• Using literal form
– Comma separated list of elements within square brackets
let a = [2, 3, 5];
let b = []; /* Empty array */

• Using Array constructor
let c = new Array();
let e = new Array(4); /* Defines array of size 4 */

• Example: ArraysOneDim.html, ArraysLengthProp.html

17

Two-Dimensional Arrays

• Can be passed to or returned from functions like one-dim arrays
• Any modifications to the array in the function will be permanent
• You can have ragged arrays
• Example: ArraysTwoDim.html

18

String Methods
• Comparison based on < and >
• concat - returns a new string representing concatenation of strings
• includes - determines whether one string is found within another
• startsWith – determines whether string begins with characters from another string
• endsWith – determines whether string ends with characters from another string
• indexOf - index of first character in string (or -1 if not found)
• lastIndexOf - index of last occurrence of character in the string (or -1 if not found)
• repeat - returns string repeated n times
• splice - extracts section of a string
• split - splits a string into array of strings
• toLowerCase/toUpperCase
• trim - trims whitespaces
• Example: StringMethods.html
• Reference

– https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

19

Getting String Characters

• The function charAt or [] allows us to access the character
associated with a particular index position in a string

– Access is similar to array indexing (first character at 0)
• Example:

let x = "Wednesday";
let secondCharacter = x.charAt(1); /* Variable has "e " */
let lengthOfString = x.length; /* Variable has 9 */

• Example: CharAt.html

20

More about Functions

• Functions can be passed and returned from other functions
(one more example)

• Example: ProcessValues.html

21

JavaScript Errors

• You may get a blank page when there is an error
• Use console to see error
• Additional debugging information:
• http://www.cs.umd.edu/~nelson/classes/resources/JavaScript/JavaScriptDebugging/

http://www.cs.umd.edu/~nelson/classes/resources/JavaScript/JavaScriptDebugging/

22

JavaScript References

• Excellent source of information
https://developer.mozilla.org/en-US/docs/Web/JavaScript

• Equivalent of Java API:
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference

• The previous reference provides excellent examples describing
the functionality of methods. Let’s take a look at a couple of
methods and the provided examples

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference

