
1

CMSC335

Web Application Development with JavaScript

Node
Department of Computer Science

University of MD, College Park

Slides material developed by Ilchul Yoon, Nelson Padua-Perez

2

NodeJS

• NodeJS
– Asynchronous event driven JavaScript runtime
– Designed for scalable network applications
– Can be used to developed full web applications
– Reference: https://nodejs.org/en/about/

• Relies on JavaScript V8 Engine
– Written in C++
– V8 incorporates just-in-time(JIT) compiler

» Compiles JavaScript to machine code rather than interpreting it
• Why use it? Performance reasons

https://nodejs.org/en/about/

3

Installation

• For installation: https://nodejs.org/en/download/
• REPL

– Read-Eval-Print-Loop (REPL) is command-line tool, for
processing Node. js expressions

• To start REPL on command line type “node”
• To exit REPL “.exit”
• For help “.help”
• Node Version is displayed when starting node
• You can write JS in the REPL
• Let’s define a variable and printed

let x = 10;
console.log(x)

https://nodejs.org/en/download/

4

WebServer Example

• Example: webserver.js
– Module (library)
– require statement imports the module
– http module is one of Node’s core modules

• About modules
– To add modules type npm install <module name> at the

command line
– Example: Installing Connect Middleware (CM) module

» c:\tempExample>npm install cm
» Files package.json and package-lock.json will be created

and directory node_modules

5

Asynchronous Programming

• fs module - File System module
• Node supports both synchronous and asynchronous versions of most File

System Functions
• Synchronous Programming

– Code that performs one task after another waiting for one to complete
before starting another

– Example: readFileContentSync.js
• Asynchronous Programming

– We don’t wait for code to finish
– Callback will take care of processing once an event has been triggered
– Example: readFileContentAsync.js

6

Global Objects

• global - similar to the browser global object
– Provides access to all globally available Node objects and functions
– Example: console.log(global)

• process
– Provides information about the Node environment and the runtime

environment
– Standard input/output occurs through process
– process.stdin - stream for stdin
– process.stdout - stream for stdout
– process.stderr - stream for stderr
– Example: webServerControl.js, values.js
– Example: imageServer.js

» URL to try: http://localhost:5000/?imageName=umcp

http://localhost:5000/?imageName=umcp

7

Event Queue

• How to enable asynchronous functionality?
– Alternative #1: Assigning thread to each time-consuming task

» Disadvantage - threads are expensive
– Alternative #2: Event-driven model

» Application does not wait for time-consuming task to finish; the task
notifies the application when it has finished by generating an event

• Node and JavaScript (browser) rely on an event-driven model
• JavaScript event loop – facilitates user interface event handling
• Node event loop – facilitates server-based functionality, mainly I/O

– Events associated with opening a file, reading contents into buffer, etc.
• Event Loop Video: https://www.youtube.com/watch?v=8aGhZQkoFbQ

by Philip Roberts.
• Animation Tool: https://goo.gl/iJRGvT

https://www.youtube.com/watch?v=8aGhZQkoFbQ
https://goo.gl/iJRGvT

8

Processing in JavaScript

• Processing in JavaScript is supported by the following main components:
– Call Stack – Runtime system (e.g., V8 engine) relies on it for code

execution
– Callback Queue – Processing of events (e.g., clicking on button, an Ajax

request) are associated with functions (callbacks) that needs to be
executed once the event takes place. This queue keeps track of those
callbacks

– Apis - Browsers and Node provide a set of Apis (e.g., an Ajax API) that will
take care of adding a callback to the Callback Queue once an event has
been identified

– Event loop – Will periodically check the Call Stack and once it is empty it
will move one callback from the Callback Queue to the Call Stack

• Notice that event though we say that JavaScript can only execute one thing at
a time, there are other entities (Apis) that are executing as the runtime engine
is executing code.

9

About setTimeout

• When setTimeout is called with a value of 0, it does not mean code will be
executed immediately. It means the Api will place the callback immediately in
the Callback Queue, but not that it will be placed in the Call Stack

10

Events

• For timers
– setTimeout() – executes callback after delay time (milliseconds)
– setInterval() – callback is executed at period intervals
– clearInterval() – clears timer
– Example: timer.js

11

References

• Learning Node, 2nd Edition
– By: Shelley Powers
– SBN-13: 978-1-4919-4312-0

