
1

CMSC335

Web Application Development with JavaScript

JavaScript6
Department of Computer Science

University of MD, College Park

Slides material developed by Ilchul Yoon, Nelson Padua-Perez

2

Object Type
• All objects in JavaScript are descendants of Object
• All objects have a property called __proto__
• The __proto__ property points to an object (called prototype) from which

properties are inherited
• Objects inherit methods and properties from Object.prototype
• The Object.prototype.isPrototypeof(obj) allow us to verify whether an

object has Object.prototype as their prototype
• Object.getOwnPropertyNames(obj) allow us to get own properties of an

object
• The Object.create() method allow us to provide a prototype object to a

newly created object
• Prototype chain

– Set of objects defined by the __proto__ property
– The end of the chain is a prototype with the null value

(Object.prototype.__proto__)
• Example: ObjectCreation.html

3

Function Properties and Methods
• In JavaScript, every function is a Function object
• The Function constructor (native code) creates a new Function object
• length property

– Number of parameters expected by a function
• Inside of a function two objects exists

– arguments
» Has all the arguments passed into the function
» It is not an array

– this
» Reference to the context object the function is operating on
» Allows associating functions to object until runtime
» You can set the this value using apply(), call(), or bind()

• Examples: FuncLength.html, FuncArguments.html,
• Examples: FuncThis.html, FuncApplyCallBind.html

4

Creating objects using constructor functions

• To create a custom object you can:
– Create a function referred to as constructor function

» Convention is to use an uppercase initial letter for the
function’s name

– Instantiate and initialize an object using new and the
constructor function

– Any function called with the new operator behaves as a
constructor; without it the function behaves as a normal
function

• Example: ConstructorFunction.html
In the example code below object creation is not efficient as we
duplicate the code for the functions (we will see a better
alternative later on)

5

Custom Type Definition
• Different approaches has been developed to address the creation of

objects associated with a particular abstraction
– Constructor Pattern
– Prototype Pattern
– Constructor/Prototype Pattern

• Constructor Pattern
– Using constructor functions
– Disadvantage: duplicating info object
– The constructor function has a property called prototype

• Example: ConstructorPattern.html

6

Sharing of prototype
• How sharing of prototype takes place when a constructor function is

used to create an object using new:
– JavaScript creates a new empty object and calls the function with

“this” referring to the new object
– The __proto__ property of the new object is initialized to point to

the object referred to by the prototype property of the
constructor function

– The new object is returned

Source: Learning JavaScript Design Patterns

7

Prototype Pattern

• The constructor function has a property called prototype
• The Constructor pattern for custom type definition has some

disadvantages
– Each instance has its own copy of methods

• The Prototype pattern addresses this problem
• Example: PrototypePattern.html

– Sharing is a problem for certain properties using the Prototype
Pattern

8

Default Pattern for Custom Types
• The default pattern for custom type definition (“class definition”)

combines the constructor and prototype pattern
– Constructor pattern defines instance variables
– Prototype pattern defines common methods and properties

• Example: DefaultPattern.html
– Even if instances for an object has been created, adding a

property/method to the prototype will make it immediately
available

9

Inheritance

• Prototype chaining : primary method for inheritance
• We can assign a particular object to the prototype property
• Example: Inheritance.html

Example: inheritance.html

10

Wrap-up

• After this class, students should be able to:
– Understand that every function is a Function object and has properties.

(e.g., length, prototype, arguments)
– Understand what object this is bound when a function is executed
– Use call, apply, bind to use this as the context object in the function

execution
– Can create custom objects from construction functions

» Any function called with the new operator behaves as a constructor
– Understand and implement code using constructor pattern, prototype

pattern, and default pattern
– Implement prototypical inheritance using the patterns above

	�
	Object Type
	Function Properties and Methods
	Creating objects using constructor functions
	Custom Type Definition
	Sharing of prototype
	Prototype Pattern
	Default Pattern for Custom Types
	Inheritance
	Wrap-up

