CMSC335

Web Application Development with JavaScript

QERSIT},
=, O,

/.

4RYLN9

Qé

JavaScript4

Department of Computer Science
University of MD, College Park

Slides material developed by lichul Yoon, Nelson Padua-Perez

Debugging (Chrome)

e Step #1 - Right-click and select Inspect after loading the script.
Then select Sources. This will open the debugger

e Step #2 - Click on a source line number to set a breakpoint

e Step #3 - To the right of the code you will see a pane with
debugger controls

— Under “Scope” you will see local and global values

e Step #4 - Reload script to start execution

e Resume, step over, step into, step out option can be found next to the
code

e Use Watch to inspect value of expressions
e (Call stack - Allows you to change stack frame

Debugging (Chrome) — debugger; Statement

e You can add in your code the debugger; statement which will stop
execution at that point

e To use the debugger; statement
— Add debugger; to your code
— Run the script
— Right-click and select Inspect, and then Sources
— Run the script
— Execution will stop at the debugger; statement

Arrow Functions

e Alternative to anonymous functions
— “Lambda Expressions”

e Rely on the => operator

e Format

— Parameters => code

— Parenthesis for parameters are only required if the function
has no parameters or 2 or more parameters. Function with
one parameter do not require parenthesis surrounding the
parameters

— If code is a single expression no curly braces or return
statement are required

e Example: ArrowFunc.html

Objects

e Property - association between a name and a value
— When the value is a function the property is referred to as a method

— Name can be any valid JavaScript string or anything that can be
converted to a String (that includes empty string)

» Any invalid property name can only be accessed using square
bracket notation

e Object - Collection of properties
— You can define your own; browser predefines a set of objects
— A property can be seen as a variable associated with a value
— Approaches to access and add properties
» Using dot-notation (e.g., obj.name)
» Using square brackets (e.g., obj[" name“])

How to Create Objects

e Using Object constructor (e.g., new Object())
— Object constructor creates an object wrapper for the given value
» Example: let x = new Object(true);

— If the provided value is null or undefined an empty object will be
created

e Using object initializer/literal notation
— An initializer is a list of zero or more property names/values in { }
— Example: let x ={}, y = { radius: 20 }

e Using Object.create

— Creates a new object, using an existing object as the prototype of
the newly created object

e Example: Objects.html

Objects as Maps

e We can also view an object as an entity that associates values with

strings. How? Let’s first see how we can use the [] operator to
access properties

— You can use [] operator instead of . (period) operator
myObj.created 2 myObj[“created”]

e IMPORTANT:

— Notice that we have a string on the right side (“created”)
whereas on the left side it is a property (variable)

e Using [] operator can provide a nice alternative to add properties
to an object dynamically (when the program is executing)

e Example: AddingProperties.html

Default Parameters

e Standardized in ES6

e Allow named parameters to be initialized with default values if no
value or undefined is passed

— Literal or computed by a function

e Example: DefaultParameters.html

Rest Operator (...variable)

e Rest parameters

— Rest operator(...variable) appears at the end of the
parameters list; it will receive all remaining parameters

— Stores the remaining parameters as an array

e Example: RestOperator.html

Spread Operator

e Opposite of rest operator

— Converts items of an iterable (e.g., array) into arguments (for a
function call) or into elements of array

— Uses triple dot (exactly like rest operator)
— Can appear anywhere (not just at the end)
— Can be used inside array literals

e Example: SpreadOperator.html

10

Destructuring Assignment

e Destructuring

— A destructuring assignment allow us to unpack values from
arrays, or properties from objects, into distinct variables

e Example: Destructuring.html

11

JSON

JSON - JavaScriptObjectNotation
Text data format used to store and send/receive data
Example:

{"firstName":"Mary", "lastName":"Smith", "age" : 30}
Popular format used by APIs to return results

JSON syntax is derived from JavaScript, but code for generating and reading
JSON can be done in any language

JSON objects are written using { }

JSON data written as name/value pairs where the name must be is in quotes
(that is not the case for JavaScript objects). The value can be a string,
number, boolean, array, object, etc.

Arrays are written using square brackets ([])

Reference: https://www.w3schools.com/whatis/whatis json.asp

Example: JSONExample.html
See JSON resources (e.g., formatters) at

— https://www.cs.umd.edu/~nelson/classes/resources/web/

12

https://www.w3schools.com/whatis/whatis_json.asp
https://www.cs.umd.edu/~nelson/classes/resources/web/

Array’s forEach, find, findindex Methods

e forEach - Calls a provided callback function once for each
element in an array in ascending order

— Not invoked for index properties that have been deleted or
are uninitialized

— Callback can have one or two parameters

e find - Returns the value of the first element in the provided array
that satisfies the provided testing function

e findindex

— Returns the index of the first element in the array that
satisfies the provided testing function. Otherwise, it returns -1

— Tests if at least one element in the array passes the test
e Example: ArrayForEachFindFindindex.html

13

Array’s map, every, some Methods

°* map

— Creates a new array with the results of calling a provided
function on every element in the calling array

e Example: ArrayMap.html
* every

— Tests if all elements in the array pass the test implemented by
the provided function. Returns a boolean value

e some
— Tests if at least one element in the array passes the test
e Example: ArrayEverySome.html

14

