
1

CMSC335

Web Application Development with JavaScript

Modules
Department of Computer Science

University of MD, College Park

Slides material developed by Ilchul Yoon, Nelson Padua-Perez

2

<script> defer attribute

• defer attribute
• For external scripts
• Does not block the page loading

– Tells the browser to continue with the page, and loads the script “in
background”, then run the script when it loads

• <script defer src=“….”></script>

3

Modules

• Split features into multiple files (modules)
• A module usually contains a class or a library of functions
• A module is just a file. One script is one module
• Two types of JS module systems

– CommonJS: implemented by node
– ECMAScript Harmony (ES6): Used for both server/client

4

CommonJS Modules

• Define functions, classes, constants in a .js file, .cjs file
• Use module.exports = { } to export entities

– Example: module.exports = { DEFAULT, add, multiply };
• Use require in file you would like to use the module

– Example: const utils = require("./utils")
» Assuming the file ./util.js has DEFAULT constant and two

functions: add and multiply
• Example: CommonJSModules

– driver1.js, driver2.js, driver3.js

5

ES Modules

• Define functions, classes, constants in a .js, .mjs file
• Use exports = { } to export entities

– Example: exports = { DEFAULT, add, multiply };
• Use import in file you would like to use the module

– Example: import * as utils from "./utils.mjs";
» Assuming the file util.mjs has DEFAULT constant and two

functions: add and multiply
• Example: ES6Modules

– NodeExamples folder
» driver1ES6.js, driver2ES6.js, driver3ES6.js

– BrowserExample folder
» You need to run this example using a web server

• Place files in htdocs or use VS Code Live Server
• Try opening the file without a server; check the console

6

Extensions (.js, .mjs, .cjs)

• .mjs – extension for E6 modules for use with a Node.js application
• .mjs files are written in JavaScript and may use the .JS extension

outside of the Node.js context
• .About Node.js will treat:

– .cjs files as CommonJS modules
– .mjs files are E6 modules
– .js files based on the default module system (CommonJS is the

default unless package.json has the directive)
» "type": "module“
» Try running examples after removing from package.json

"type": "module“

7

Modules in Browsers

• If used in a browser, must tell the browser that a script should be
treated as module, by using the attribute <script type="module">

• Module scripts are always deferred
– same effect as defer attribute

