
1

CMSC335

Web Application Development with JavaScript

JavaScript4
Department of Computer Science

University of MD, College Park

Slides material developed by Ilchul Yoon, Nelson Padua-Perez

2

Debugging (Chrome)

• Step #1 - Right-click and select Inspect after loading the script.
Then select Sources. This will open the debugger

• Step #2 - Click on a source line number to set a breakpoint
• Step #3 - To the right of the code you will see a pane with

debugger controls
– Under “Scope” you will see local and global values

• Step #4 - Reload script to start execution
• Resume, step over, step into, step out option can be found next to the

code
• Use Watch to inspect value of expressions
• Call stack - Allows you to change stack frame

3

Debugging (Chrome) – debugger; Statement

• You can add in your code the debugger; statement which will stop
execution at that point

• To use the debugger; statement
– Add debugger; to your code
– Run the script
– Right-click and select Inspect, and then Sources
– Run the script
– Execution will stop at the debugger; statement

4

Arrow Functions

• Alternative to anonymous functions
– “Lambda Expressions”

• Rely on the => operator
• Format

– Parameters => code
– Parenthesis for parameters are only required if the function

has no parameters or 2 or more parameters. Function with
one parameter do not require parenthesis surrounding the
parameters

– If code is a single expression no curly braces or return
statement are required

• Example: ArrowFunc.html

5

Objects

• Property - association between a name and a value
– When the value is a function the property is referred to as a method
– Name can be any valid JavaScript string or anything that can be

converted to a String (that includes empty string)
» Any invalid property name can only be accessed using square

bracket notation
• Object - Collection of properties

– You can define your own; browser predefines a set of objects
– A property can be seen as a variable associated with a value
– Approaches to access and add properties

» Using dot-notation (e.g., obj.name)
» Using square brackets (e.g., obj[" name“])

6

How to Create Objects

• Using Object constructor (e.g., new Object())
– Object constructor creates an object wrapper for the given value

» Example: let x = new Object(true);
– If the provided value is null or undefined an empty object will be

created
• Using object initializer/literal notation

– An initializer is a list of zero or more property names/values in { }
– Example: let x = {}, y = { radius: 20 }

• Using Object.create
– Creates a new object, using an existing object as the prototype of

the newly created object
• Example: Objects.html

7

Objects as Maps

• We can also view an object as an entity that associates values with
strings. How? Let’s first see how we can use the [] operator to
access properties

– You can use [] operator instead of . (period) operator

myObj.created à myObj[“created”]

• IMPORTANT:
– Notice that we have a string on the right side (“created”)

whereas on the left side it is a property (variable)
• Using [] operator can provide a nice alternative to add properties

to an object dynamically (when the program is executing)
• Example: AddingProperties.html

8

Default Parameters

• Standardized in ES6
• Allow named parameters to be initialized with default values if no

value or undefined is passed
– Literal or computed by a function

• Example: DefaultParameters.html

9

Rest Operator (…variable)

• Rest parameters
– Rest operator(…variable) appears at the end of the

parameters list; it will receive all remaining parameters
– Stores the remaining parameters as an array

• Example: RestOperator.html

10

Spread Operator

• Opposite of rest operator
– Converts items of an iterable (e.g., array) into arguments (for a

function call) or into elements of array
– Uses triple dot (exactly like rest operator)
– Can appear anywhere (not just at the end)
– Can be used inside array literals

• Example: SpreadOperator.html

11

Destructuring Assignment

• Destructuring
– A destructuring assignment allow us to unpack values from

arrays, or properties from objects, into distinct variables
• Example: Destructuring.html

12

JSON
• JSON - JavaScriptObjectNotation
• Text data format used to store and send/receive data
• Example:

{"firstName":"Mary", "lastName":"Smith", "age" : 30}
• Popular format used by APIs to return results
• JSON syntax is derived from JavaScript, but code for generating and reading

JSON can be done in any language
• JSON objects are written using { }
• JSON data written as name/value pairs where the name must be is in quotes

(that is not the case for JavaScript objects). The value can be a string,
number, boolean, array, object, etc.

• Arrays are written using square brackets ([])
• Reference: https://www.w3schools.com/whatis/whatis_json.asp
• Example: JSONExample.html
• See JSON resources (e.g., formatters) at

– https://www.cs.umd.edu/~nelson/classes/resources/web/

https://www.w3schools.com/whatis/whatis_json.asp
https://www.cs.umd.edu/~nelson/classes/resources/web/

13

Array’s forEach, find, findIndex Methods

• forEach - Calls a provided callback function once for each
element in an array in ascending order

– Not invoked for index properties that have been deleted or
are uninitialized

– Callback can have one or two parameters
• find - Returns the value of the first element in the provided array

that satisfies the provided testing function
• findIndex

– Returns the index of the first element in the array that
satisfies the provided testing function. Otherwise, it returns -1

– Tests if at least one element in the array passes the test
• Example: ArrayForEachFindFindIndex.html

14

Array’s map, every, some Methods

• map
– Creates a new array with the results of calling a provided

function on every element in the calling array
• Example: ArrayMap.html
• every

– Tests if all elements in the array pass the test implemented by
the provided function. Returns a boolean value

• some
– Tests if at least one element in the array passes the test

• Example: ArrayEverySome.html

