
JS

Pull from upstream!

Commit any changes first!

Slides created in conjunction with: Ilchul Yoon, Nelson Padua Perez

Agenda
● Higher order functions with arrays
● Symbols
● Maps/Sets
● Objects

Logistics

Project 1 has been posted

Exercise 1 grades will be posted by the end of the week
(hopefully)!

Three More Notable Array Methods
● reduce

○ Executes a reducer function (callback) on each element of the array,
resulting in a single output value

○ First argument of the callback function is “accumulator”
○ Passes the result of callback (the accumulator) from one array element to

the other

● filter
○ Creates a new array with all elements that pass the test implemented by

the provided function

Three More Notable Array Methods
● Map

○ The map() method creates a new array populated with the results of
calling a provided function on every element in the calling array.

○ Syntax (how we will use it anyway):

let new_array = arr.map(function callback(
currentValue[, index]) {

// return element for new_array

})

Symbols
● New primitive type in ES6
● Tokens that serve as unique ids

○ Create via the factory function Symbol()
○ “new” keyword does not work

Let x = Symbol(“Description”);

Symbols
● Can be used as special property keys
● Every symbol is unique

○ Symbol() === Symbol() is false

● Symbols can be used as property keys
○ Computed property key
○ Allows you to specify key of a property via an expression, by putting it in

square brackets

● String value parameter is optional

Using Symbols
● Following operations ignore symbols

○ for-in loop
○ Object.keys()

○ Object.getOwnPropertyNames()

● Conversion of Symbol to Boolean returns true

● Can be used to represent concepts

○ const RED_COLOR = Symbol(‘red color’);

Sets

● Collection of keys

● Keys can be primitive or references

● The Set constructor has zero or more arguments. With no

arguments an empty Set will be created

● If an argument is specified, it needs to be iterable (e.g., array)

● When iterating over sets, elements will be processed in the

order they were inserted

Maps

● Collection of keys

● Keys can be primitive or references

● The Set constructor has zero or more arguments. With no

arguments an empty Set will be created

● If an argument is specified, it needs to be iterable (e.g., array)

● When iterating over sets, elements will be processed in the

order they were inserted

Creating Maps and Sets
Map:

● let m = new Map();
● m.set(key, value);

Set:

● let s = new Set();
● s.add(value);

Immediately Invoked Function Expression (IIFE)
● A JS function that runs as soon as it is defined
● A design pattern known as a Self-Executing Anonymous

Function
● Two parts

○ anonymous function with lexical scope enclosed within the Grouping
Operator ().

○ Prevents accessing variables within the IIFE idiom as well as polluting
the global scope.

● Emulating block-scoped variables
● Not needed, if “let” is used instead of “var”

Objects

● Just a collection of properties
○ You can define your own; browser predefines a set of objects
○ A property can be seen as a variable associated with a value
○ Approaches to access and add properties

■ Using dot-notation
■ Using square brackets

JSON
• JSON – JavaScript Object Notation
• Syntax for serializing objects, arrays, numbers, booleans, and null
• Based on JavaScript syntax, but distinct from it

• Some JavaScript is not JSON and some JSON is not JavaScript

• Lightweight data-interchange format

• Alternative to XML

• Derived from JavaScript but it is language independent

• JSON Example: http://json.org/example.html

JSON
• Methods
• JSON.parse() → parse a string as JSON (returns the Object corresponding to the JSON
text

• JSON.stringify() → returns a string corresponding to the specified value

• Examples and information: https://www.w3schools.com/js/js_json_intro.asp
• References:
• https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON

• Example: JSONExample.html

Objects

● Property – association between a name and a value
○ When the value is a function the property is referred to as a

method
○ Name can be any valid JavaScript string or anything that can be

converted to a String (that includes empty string)
■ Any invalid property name can only be accessed using square

bracket notation

How do we create Objects?
● Using Object Constructor

● Using Object Initializer/literal notation

● Using Object.create

Objects as Maps
● We can also view an object as an entity that associates

values with strings.
○ Use the [] operator

Ex: myObj.value == myObject[“value”]

Object Type
● All objects in JavaScript are descended from Object
● All objects have a property called __proto__
● The __proto__ property points to an object (called

prototype) from which properties are inherited
● Objects inherit methods and properties from

Object.prototype
● Prototype chain

○ Set of objects defined by the __proto__ property
○ The end of the chain is a prototype with the null value

(Object.prototype.__proto__)

Object Prototypes
● Methods:

○ Object.prototype.hasOwnProperty(prop)
■ prop is a direct property (not inherited through the prototype chain)

○ Object.prototype.isPrototypeof(obj)
○ Object.prototype.toString()

■ Returns a string representation of the object

○ Object.prototype.valueOf()
■ Returns the primitive value of the specified object

○ In ES6, Symbol.toPrimitive is a symbol that specifies a function
valued property that is called to convert an object to a
corresponding primitive value.

Object Constructors
● Rather than handwriting all values in an object, Javascript

allows for Object Constructors

Ex:

function Person(first, last, age, eye) {
this.firstName = first;
this.lastName = last;
this.age = age;
this.eyeColor = eye;

}

Function Properties and Methods
• In JavaScript every function is a Function object

• The Function constructor creates a new Function object

• Length property

• Example: FuncLength.html

• Inside of a function two object exists

• Argument → Has all the arguments passed into the function

• Example: FuncArguments.html

• this

• Reference to the context object the function is operating on

• Allows associating functions to object until runtime
• You can set the this value using apply(), call(), or bind()

• Example: FuncThis.html, FuncApplyCallBind.html

Custom Type Definition
• ECMAScript 5 does not provide a way to define classes as in Java

• ECMAScript 6 does!

• Different approaches has been developed to address the creation of objects associated with a

particular abstraction

• Constructor Pattern

• Prototype Pattern
• Constructor/Prototype Pattern

• Example: ConstructorPattern.html

• Using constructor functions

• Disadvantage: duplicating info object

Prototype Pattern

• The Constructor pattern for custom type definition has some

disadvantages
• Each instance has its own copy of methods

• The Prototype pattern addresses this situation

• Example: PrototypePattern.html
• Notice that sharing is a problem for certain properties using the

Prototype Pattern

Default Pattern for Custom Types

• The default pattern for custom type definition (“class definition”) combines the constructor
and protoype pattern

• Constructor pattern defines instance variables

• Prototype pattern defines common methods and properties

• Example: DefaultPattern.html

• Note: Notice that even if instances for an object has been create adding a property/method
to the prototype will make it immediately available

Inheritance

• Prototype chaining → primary method for inheritance

• We can assign a particular object to the prototype property

• Example: Inheritance.html

WTWAW
After today make sure you know how to:

● Create a symbol (and know it’s use)
● Use and manipulate maps and sets
● Create Objects all 3 ways
● Create an object constructor
● 3 different ways to create custom types

