
Array Methods
• Example: ArrayMethods*.html

© 2018 Dept of Computer Science UMD 1

Set Methods
• Example: SetMethods.html

© 2018 Dept of Computer Science UMD 2

Immediately Invoked Function Expressions
• Example: ImmediatelyInvokedFunctionExpression.html

© 2018 Dept of Computer Science UMD 3

Function Context
• Problem

• Example: FunctionContextIncorrect.html

• How to address the problem

• Example: FunctionContextCorrect/a/b/c.html

© 2018 Dept of Computer Science UMD 4

Event Propagation
• Example: EventPropagation.html, EventPropagationControlled.html,

AccessingElementEventOcurred.html

© 2018 Dept of Computer Science UMD 5

Features
• In E6 (ECMAScript6) the key of a property can be a string or a symbol

• Computed Property Keys

• To specify the key of a property we can use a fixed name (e.g.,
student.name = “Mary”

• We can also use an expression in square brackets (computed property
key approach)

• Example: ComputedPropKeys.html

• Definition of methods without using function

• Main use case – symbols

• Define a symbol

• Use it as a property key that is unique

© 2018 Dept of Computer Science UMD 6

Features
• Object.assign(target, src1, src2, …)

• Combines enumerable own (non-inherited) properties of sources into
the target

• Returns target

• Example: ObjectMethods.html

• Can also be used to assign methods

• Object.is()

• Provides a more precise comparison alternative to ===

• Example: ObjectMethods.html

© 2018 Dept of Computer Science UMD 7

JavaScript Classes
• E6 Classes provide a convenient syntax to define constructor functions

• Defined using the class construct

• A class body cannot contain properties (only methods)

• Use static to define class methods, no static data members

• Relies on constructor to define a constructor (not the class name)

• A class, unlike a function, a class constructor cannot be invoked unless you use
new
• Student() call (assuming Student is a class will not work)

• No need to use semicolons to separate method definitions. Using of commas is
forbidden

• Unlike functions, class declarations are not hoisted
• Class definitions must be seen before using the class

• Example: ClassDefinitionDeclaration.html

• Previous example relies on class declaration approach for class definition. Class
expression is a second approach

• Example: ClassDefinitionExpression.html

© 2018 Dept of Computer Science UMD 8

JavaScript Classes
• If you don’t provide a constructor the following definition is used:

• constructor() {}

• You can define a subclass using extends

• Only single inheritance is supported

• Example: Subclass.html

• If you don’t provide a constructor in a derived class the following constructor is
used:
• Constructor(..arguments) {

super(…arguments)
}

• Private data
• Can follow convention of using _ for instance variables

• Will not actually protect the data
• Using WeakMaps
• Other approaches available

• Example: Private.html

© 2018 Dept of Computer Science UMD 9

Iterators
• Objects with interface designed for iteration

• An iterator object has:

• next() method – returns a result object

• result object – has two properties

• value – next value

• done – true when there are no more values

• Keeps a pointer

© 2018 Dept of Computer Science UMD 10

Generators
• Generator - function that returns an iterator

• Code that can be paused and resume

• Relies on function* to define a generator function

• yield operator – allows the generator to pause

• Generators can receive input/output using yield

• yield can only be used within generators

• yield cannot cross functions (e.g., yield cannot appear inside of a function that
is inside of the generator function)

• next method – resumes execution

• The generator function returns a generator object

• Generators implement the interface Iterable

• Can be used by constructs that support iterables (e.g., for-of)

• Example: Generator1.html, Generator2.html, GeneratorInClass.html

• You can have function expressions that create generators

• let myIterator = function *() { … };

© 2018 Dept of Computer Science UMD 11

Iterable
• Iterable- object with a Symbol.iterator property

• Symbol.iterator specifies function that returns an iterator for the object

• In ECMAScript 6 the following are iterables
• Arrays
• Sets
• Maps
• Strings

• Iterables have been design to work with for-of loops
• for-of calls next() on each loop execution
• Loop stops when object’s done property is true
• Example: Iterable1.html

• for-of throws error on non-iterable object

• You can add iterator to custom types
• Example: Iterable2.html

© 2018 Dept of Computer Science UMD 12

Collection Iterators
• E6 has three collection types: arrays, sets, and maps. All are associated

with the following built-in iterators

• keys() iterator for the keys

• values() iterator for the values

• entries() iterator for key/value pairs returned as a two-element
array

• Default iterator used by for-of

• Arrays and set values()

• Maps entries()

• WeakMaps and Weak do not have built-in iterators

© 2018 Dept of Computer Science UMD 13

Iterables and Spread Operator
• Spread operator (…) works on all iterables using the default iterator to

determine the elements to insert into the array

• Direct approach to covert iterable into array

© 2018 Dept of Computer Science UMD 14

References
• http://exploringjs.com/es6/

• Understanding ECMAScript 6 - ISBN-13: 978-1-59327-757-4

© 2018 Dept of Computer Science UMD 15

http://exploringjs.com/es6/

