HTTP Protocol

e HTTP session

Sequence of network request-response transactions

 HTTP defines methods (verbs) that indicate the action to be performed on a specific
resource

e Methods

GET - Requests a particular resource (e.g., a file)

POST - Submits data to be processed by a particular resource (e.g. inputting data into a
database)

HEAD - Returns what GET returns, but without the actual resource (just headers)
PUT - Sends a representation of a particular resource

DELETE - Deletes the specified resource

TRACE - Echoes received request so client can check if any changes have been made
OPTIONS > HTTP method supported by the server for the specified URL

CONNECT > Converts request connection to TCP/IP tunnel

PATCH - To apply partial modifications to a resource

e HTTP servers must implement GET and HEAD and whenever possible OPTIONS



HTTP Protocol

» Response status codes (five classes)

* 1xx Informational
* 2xx Success

* 200 2 OK
* 3xx Redirection
e 4xx Client Error

* 401> Unauthorized

* 404 - Not found

» Useful “Page Not Found” error messages
* http://www.evolt.org/node/4299

* 5xx Server Error

 Full listing at:
* http://en.wikipedia.org/wiki/List of HTTP status codes

* Example (using telnet)
e http://www.cs.umd.edu/class/fall2005/cmsc433/HowWebServersWork.html

© 2018 Dept of Computer Science UMD


http://www.evolt.org/node/4299
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://www.cs.umd.edu/class/fall2005/cmsc433/HowWebServersWork.html

Web Services

* Web Service — Method of communication between two applications

* Web API (Application Programming Interface) that can be accessed over a
network and executed at a remote system

* Allows client applications to build interfaces to the service

* Web services share logic, data and processes through a programmatic interface
across a network

e Two kinds
* SOAP (Simple Object Access Protocol)
* REST (Representational State Transfer)
* In General
* REST = light-weight interactions
* SOAP = secure, reliable interactions
* Each has its advantages

* Example:
* http://code.google.com/apis/maps/documentation/webservices/#WebServices

© 2018 Dept of Computer Science UMD 3


http://code.google.com/apis/maps/documentation/webservices/#WebServices

Web Services

* Services can range from simple requests to complicated business processes
* Payment processing, content syndication
e Currency conversion, language translation

* Any internet protocol can be used to build web services but HTTP and XML
are often used

* By using web services your application can publish its functionality to the
world

* Web services can be created in any programming language

* Web services allow data exchange between different applications and
different platforms

* With web services a company billing system can connect with a supplier
server



Web Services (REST)

* REST (Representational State Transfer)

* An architectural style; not a protocol
 Allow different data formats (e.g., html, text, JSON)

* Advantages
* Fast, language, and platform independent

e Can use SOAP web services as the implementation



Web Services (REST)

* Resources are represented by URLs
* Resource =2 document, person, location
* Each resource has a unique URL

* Each resource does not need to have an actual
page/document. It can be generated dynamically

e A resource is considered a “noun”

* Operations are performed via HTTP methods (GET, POST, PUT,
DELETE)

* Methods are considered “verbs”

* REST - designed to operate with resource-oriented services
(locate/manipulate resource)



Web Services (REST)

* Example:
* Web service that allows individuals to manage file backups

* Each backup has an URL
http://backupFake.doesnotexist.org/backups/1938

* Using HTTP GET we can get the backup
* Using HTTP PUT we can update a backup
e Using HTTP POST we can upload a backup
* We can receive a URL that corresponds to the new backup
* Using HTTP DELETE we can delete a backup

* Notice that REST relies on a familiar approach (HTTP methods) to ask
for services (we don’t need to create a new interface/approach)



http://backupfake.doesnotexist.org/backups/1938

Web Services(SOAP)

* SOAP (Simple Object Access Protocol)

XML-based protocol for accessing web services

Platform and language independent

Designed as a way to package remote procedure calls into XML wrappers

Disadvantages
e Slow — Uses XML format that must be parsed to be read
e Consumes more bandwidth

SOAP request
XML document
* Has three components
* Envelop = defines document as SOAP request
* Body = provides information about the call and responses
e Optional header and fault elements

* SOAP response is an XML document
* SOAP cannot use REST because it is a protocol

* SOAP defines standards to be strictly followed



Web Services (Platform Elements)

* WSDL (Web Services Description Language)
* XML-based language for describing and locating web services
* W3C standard
 Similar to a contract that defines the interface that services offers
* [t is machine-readable

 UDDI (Universal Description, Discovery and Integration)

* Directory service where companies can search and register for web
services described by WSDL



REST vs. SOAP

e https://www.javatpoint.com/soap-vs-rest-web-services

* SOAP is a procotol; REST architectural style

* SOAP can’t use REST as it is a protocol; REST can use SOAP web
services

* SOAP uses services interface to expose logic; REST uses URIs

* SOAP defines standards to be strictly followed; REST does not define
too many standards

* SOAP requires more bandwidth and resources; REST requires less

* SOAP defines its own security; REST inherits security from underlying
transport

* SOAP permits only XML data; REST permits different data format


https://www.javatpoint.com/soap-vs-rest-web-services

References

* http://en.wikipedia.org/wiki/Hypertext Transfer Protocol

* https://www.javatpoint.com/soap-web-services

© 2018 Dept of Computer Science UMD

11


http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://www.javatpoint.com/soap-web-services

Promises

* Promise - object that represents the eventual completion (or failure)
of an asynchronous operation.

» We attach callbacks to the promise object
* Allows promise chaining

* Execution of two or more asynchronous operations back to back
where results of one step are used by the next

* Example: PromisesBasics.html, PromisesFib.js

e Reference
* https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using promises

© 2018 Dept of Computer Science UMD 12


https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises

Modules

* Immediately Invoked Function Expression
* Example: ImmediatelylnvokedFunctionExpression.html

* Example: ModulelmplementationViallFE.html

* Modules in Node
* Define your functions a file
* To export add the function to the exports object
* Example: https://nodejs.org/docs/v0.5.0/api/modules.html

© 2018 Dept of Computer Science UMD

13


https://nodejs.org/docs/v0.5.0/api/modules.html

Modules

* Two module specifications:
 CommonlS and AMD (Asynchronous Module Definition)

* AMD
* Designed with the browser in mind
* Popular implementation — RequiredJS

* CommonlS
* For general-purpose JavaScript (e.g., NodelS)



