
NodeJS

• NodeJS

• Asynchronous event driven JavaScript runtime

• Designed for scalable network applications

• Can be used to developed full web applications

• Reference: https://nodejs.org/en/about/

• Relies on JavaScript V8 Engine

• Written in C++

• V8 incorporates just-in-time(JIT) compiler

• Compiles JavaScript to machine code rather than interpreting it

• Why use it? Performance reasons

© 2018 Dept of Computer Science UMD 1

https://nodejs.org/en/about/

Installation

• From nodejs.org

• To start type on command line “node”

• To exit “.exit”

• For help

• node --help

• Version

• node –v

• To check syntax

• node –c filename.js

© 2018 Dept of Computer Science UMD 2

WebServer Example

• Example: webserver.js

• Module (library)

• require statement imports the module

• http module is one of Node’s core modules

•About modules
• To add modules type npm install <module name> at the command

line

• Example: Installing Connect Middleware (CM) module
• c:\tempExample>npm install cm

© 2018 Dept of Computer Science UMD 3

Asynchronous Programming

• fs module – File System module

• Node supports both synchronous and asynchronous versions of most
File System Functions

• Synchronous Programming

• Code that performs one task after another waiting for one to
complete before starting another

• Example: readFileContentSync.js

• Asynchronous Programming

• We don’t wait for code to finish

• Callback will take care of processing once an event has been triggered

• Example: readFileContentAsync.js

• You cannot use try … catch with asynchronous functions

© 2018 Dept of Computer Science UMD 4

Global Objects

• global – similar to the browser global object

• Provides access to all globally available Node objects and functions

• Example: console.log(global)

• Process

• Provides information about the Node environment and the runtime
environment

• Standard input/output occurs through process

• process.stdin – stream for stdin

• process.stdout – stream for stdout

• process.stderr – stream for stderr

• Example: webServerControl.js

• Example: imageServer.js

© 2018 Dept of Computer Science UMD 5

Event Queue

• How to enable asynchronous functionality?
• Alternative #1: Assigning thread to each time-consuming task

• Disadvantage – threads are expensive
• Alternative #2: Event-driven model

• Application does not wait for time-consuming task to finish; the
tasks notifies the application when it has finished by generating an
event

• Node and JavaScript (browser) rely on an event-driven model

• JavaScript event loop – facilitates user interface event handling

• Node event loop – facilitates server-based functionality, mainly I/O
• Events associated with opening a file, reading contents into buffer,

etc.

• Event Loop Video: https://www.youtube.com/watch?v=8aGhZQkoFbQ

by Philip Roberts.

• Animation Tool: https://goo.gl/iJRGvT

© 2018 Dept of Computer Science UMD 6

https://www.youtube.com/watch?v=8aGhZQkoFbQ
https://goo.gl/iJRGvT

Processing in JavaScript

• Processing in JavaScript is supported by the following main components:

• Call Stack – Runtime system (e.g., V8 engine) relies on it for code
execution

• Callback Queue – Processing of events (e.g., clicking on button, an
Ajax request) are associated with functions (callbacks) that needs to
be executed once the event takes place. This queue keeps track of
those callbacks

• Apis - Browsers and Node provide a set of Apis (e.g., an Ajax API) that
will take care of adding a callback to the Callback Queue once an
event has been identified

• Event loop – Will periodically check the Call Stack and once it is
empty it will move one callback from the Callback Queue to the Call
Stack

• Notice that event though we say that JavaScript can only execute one
thing at a time, there are other entities (Apis) that are executing as the
runtime engine is executing code.

© 2018 Dept of Computer Science UMD 7

About setTimeout

• When setTimeout is called with a value of 0, it does not mean code will
be executed immediately. It means the Api will place the callback
immediately in the Callback Queue, but not that will be placed in the Call
Stack.

© 2018 Dept of Computer Science UMD 8

Scheduling an Asynchronous Task

• Example: FibonacciAsync.js

• process.nextTick()

• Callback function called once the current queue is empty, but before
any new events are added

© 2018 Dept of Computer Science UMD 9

Events

• For timers

• setTimeout() – executes callback after delay time (milliseconds)

• setInterval() – callback is executed at period intervals

• clearInterval() – clears timer

• Example: timer.js

• EventEmitter

• Enables asynchronous event handling

• EventEmitter.emit() generates event

• The EventEmitter.on() event handler called when a specific event is
generated

© 2018 Dept of Computer Science UMD 10

References

• Learning Node, 2nd Edition

• By: Shelley Powers

• SBN-13: 978-1-4919-4312-0

© 2018 Dept of Computer Science UMD 11

