JavaScript Reference

* https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference

© 2018 Dept of Computer Science UMD

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference

JavaScript Console

* Allow us to view JavaScript errors

 console object functions
* log = General message
* info 2 Informational message
* error > Error message
e warn = Warning message
* In Chrome
* Tools—>JavaScript console
* Notice that different icons are used
* You can practice JavaScript by typing code at the console

* Example: consoleEx.html

Built-in Types

* Object — generic object

 Array — list of values (numerically indexed)
* Function

* Error — runtime error

* Date — date / time

* RegExp — regular expression

* Many of built-in type have a literal form that enables you to
define a value without explicitly creating an object (using new)

* The typical function definition is based on a literal form

Primitive Wrapper Types

* Three types: Boolean, String, and Number
* Primitive wrapper types simplify working with primitives
* Wrapper types are automatically created when needed

* Example: Wrapper.html

Global Object

 ECMAScript defines a global object
* In JavaScript window implements the global object

 All functions and variables defined globally become part of the global
object

* Some functions that are part of the Global object
* isNaN()
 parseFloat()
* parselnt()
* eval()
* isFinite()
» decodeURI()

Global Object

* Some properties that are part of the Global object
* NaN
* undefined
* Object = Constructor for Object
 Array =2 Constructor for Array
* Function = Constructor for Function
* Number = Constructor for Number
e String = Construct or for String
» Date = Constructor
* Error = Constructor
* RegExp = Constructor

 ECMAScript also defines the Math object

Functions

* Functions are objects

* The name of the function is a reference value

* Functions can be passed and returned from other functions
* Functions can be defined inside of other functions

* Function Declaration

function name (<comma-separated list of parameters>) {

statements

* Functions are invoked by using the () operator

* We don’t use var for parameters (e.g. function print(x, y))
e Parameters are passed by value

* There is no main function like in other languages

e Returning values via return

© 2018 Dept of Computer Science UMD

Functions

* Three approaches to define functions
* Function declaration
* Read and available before any code is executed

 When a function is hoisted it is internally moved to the beginning of
the current scope

* Function declaration hoisting allows calling the function after its
declaration
* Functions can appear in any other

* Function expression
* Using Function constructor

* Example: DefiningFunctions.html
 Example: FunctionsAsData*.html

* Function overloading is not possible
» Second function redefines the first one

One-Dimensional Arrays

 Array = Collection of values that can be treated as a unit or individually
var a = new Array(4);

* Indexing > We access an element using []
* First element associated with index O (e.g., a[0])

* An element of an array can be of any type and an array can hold
different types of elements

* The length property represents the length of the array (e.g., a.length)
* We can print the contents of an array by using alert

Definition of One-Dim Arrays

* Using literal form
 Comma separated list of elements within square brackets

vara=[2, 3, 5];
var b =[]; // empty array

* Using Array constructor

var ¢ = new Array();
var e = new Array(4); // defines array of size 4

* Example: ArraysOneDim.html
* Example: ArraysLengthProp.html

Two-Dimensional Arrays

e JavaScript does not support actual two-dimensional arrays
* You can simulate two-dimensional arrays by using an array of arrays
e About two-dimensional arrays

* You can pass them and return them from functions like one-
dimensional arrays

* Any modifications in the function will be permanent
* You can have ragged arrays

* Example: ArraysTwoDim.html

String Methods

e Comparison based on < and >

* concat — returns a new string representing concatenation of strings

* includes — determines whether one string is found within another
 startsWith — whether string begins with characters from another string
* endsWith — whether string ends with characters of another string

* indexOf — index of first character in string (or -1 if not found)

* lastindexOf — index of last occurrence of character in the string (or -1 if not found)
* repeat — returns string repeated n times

* splice — extracts section of string

* split — splits a string into array of strings

* toLowerCase

* toUppserCase

* trim — trims whitespaces

* Example: StringMethods.html

* Reference:
* https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global Objects/String

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

Getting String Characters

* The function charAt or [] allows us to retrieve the character associated
with a particular index position in a string. Access is similar to array
indexing (first character at 0).

e Example

* varx="Wednesday";
e var secondCharacter = x.charAt(1); // variable has "e";
* var lengthOfString = x.length; // variable has 9

 Example: CharAt.html

Array Methods

e fill - fill elements of an array

 concat - returns copy of joined arrays

* indexOf - returns position of element in array

* join - returns string with all elements in the array
* pop - removes & returns last element

* push - adds to the end (returns length)

* reverse - reverses the array

shift - removes & returns first element

unshift - adds new element to the beginning
splice — adds and/or removes elements from an array
 Example: ArrayMethods.html

e Example: Sorting.html
* https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global Objects/Array

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

instanceof Operator

 typeof returns “object” for all reference types

* instanceof operator

* Returns true if a value is an instance of the specified type and
false otherwise

* instanceof can identify inherited types
* Note: every object is an instance of Object
* Regarding arrays
 Although instanceof can identify arrays, use Array.isArray()

instead as instanceof will not work in all cases (e.g., when a array
is passed from one frame to another).

* Example: InstanceOf.html

let/const/

* No block scope so far (E6 introduces it)
* Example: NoBlockScope.html

* let replaces var for variable declarations and provides block scoping
e Example: BlockScope.html
* let is the new var

 const allows you to declare a constant variable that has block scope
* Example: const.html

for of

* Works on objects that have a method that returns an iterator
* Example: ForOf.html

Template Literals

* Allows you to replace placeholders in text
* Defined using the backtick character
* Placeholders identified with S{}
* Example: Templateliteral.html

Random Values

* Example: RandomValues.html

Null and undefined

 null = indicates no value (nothing)
e undefined
* Value associated with uninitialized variables

e var x; // in a function
* Value returned by function when no explicit value is returned
(IMPORTANT case)
* Value associated with object properties that do not exist

» == considers null and undefined equal
e === considers null and undefined different

NaN

NaN

* Generated when arithmetic operations result in undefined or
unrepresentable value

* Generated when attempting to coerce to a numeric value a non-
numeric value

* Global isNaN function = determines (returns true or false) whether

an argument is not a number. It attempts to convert the argument
to a number

* Number.isNaN() = More robust version of isNaN()

NaN

* The following comparisons return false
NaN == NaN, NaN === NaN
 Remember = lisNaN() allow us to determine whether an expression is
a number
* Notice: isNaN(20) - False
* You may want to write a function call isNumber that returns
lisNaN(x)

* Example: NaN.html

Numeric Values

* Example: NumericValues.html
* Infinity is a global property

* isFinite() — returns false if argument is NaN, positive/negative
infinity; otherwise, it returns true.

* isFinite() vs. Number.isFinite()

About prompt

* Returns null when cancel is selected
* Example: Null.html, ValidityCheck.html

Debugging

e Chrome

 Select Inspect after loading the script, and Sources. This will open the debugger on
the rightmost pane. Click on a source line to set a break point.

e Chrome

* You can add in your code the statement debugger; which will invoke the debugger
when you run the script. To access the debugger, open the script, select Inspect,
and run. You will see the debugger on the rightmost pane.

* Firefox Debugger
* Open script you want to debug with Firefox
* You will find the debugger at Tools—>Web Developer->Debugger
* To set a breakpoint click on the line number
 Right-click on a line number provides additional options
* Reload page to run script

 Typical stop, set over and step into option can be found on stop of “Sources” and
“Call Stack” tabs

* Call Stack — allows you to change stack frame

e http://www.cs.umd.edu/~nelson/classes/utilities/JavaScript/JavaScriptDebugging/

© 2018 Dept of Computer Science UMD 25

http://www.cs.umd.edu/~nelson/classes/utilities/JavaScript/JavaScriptDebugging/

