
JavaScript Reference
• https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference

© 2018 Dept of Computer Science UMD 1

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference

JavaScript Console

• Allow us to view JavaScript errors

• console object functions

• log  General message
• info  Informational message

• error  Error message

• warn Warning message

• In Chrome

• ToolsJavaScript console
• Notice that different icons are used
• You can practice JavaScript by typing code at the console

• Example: consoleEx.html

© 2018 Dept of Computer Science UMD 2

Built-in Types

• Object – generic object

• Array – list of values (numerically indexed)

• Function

• Error – runtime error

• Date – date / time

• RegExp – regular expression

• Many of built-in type have a literal form that enables you to
define a value without explicitly creating an object (using new)

• The typical function definition is based on a literal form

© 2018 Dept of Computer Science UMD 3

Primitive Wrapper Types

• Three types: Boolean, String, and Number

• Primitive wrapper types simplify working with primitives

• Wrapper types are automatically created when needed

• Example: Wrapper.html

© 2018 Dept of Computer Science UMD 4

Global Object

• ECMAScript defines a global object

• In JavaScript window implements the global object

• All functions and variables defined globally become part of the global
object

• Some functions that are part of the Global object

• isNaN()

• parseFloat()

• parseInt()

• eval()

• isFinite()

• decodeURI()

© 2018 Dept of Computer Science UMD 5

Global Object

• Some properties that are part of the Global object

• NaN

• undefined

• Object  Constructor for Object

• Array  Constructor for Array

• Function  Constructor for Function

• Number  Constructor for Number

• String  Construct or for String

• Date  Constructor

• Error  Constructor

• RegExp Constructor

• ECMAScript also defines the Math object

© 2018 Dept of Computer Science UMD 6

Functions
• Functions are objects

• The name of the function is a reference value

• Functions can be passed and returned from other functions

• Functions can be defined inside of other functions

• Function Declaration

function name (<comma-separated list of parameters>) {

statements

}

• Functions are invoked by using the () operator

• We don’t use var for parameters (e.g. function print(x, y))

• Parameters are passed by value

• There is no main function like in other languages

• Returning values via return
© 2018 Dept of Computer Science UMD 7

Functions

• Three approaches to define functions

• Function declaration

• Read and available before any code is executed

• When a function is hoisted it is internally moved to the beginning of
the current scope

• Function declaration hoisting allows calling the function after its
declaration
• Functions can appear in any other

• Function expression

• Using Function constructor

• Example: DefiningFunctions.html

• Example: FunctionsAsData*.html

• Function overloading is not possible

• Second function redefines the first one

© 2018 Dept of Computer Science UMD 8

One-Dimensional Arrays

• Array Collection of values that can be treated as a unit or individually

var a = new Array(4);

• IndexingWe access an element using []
• First element associated with index 0 (e.g., a[0])

• An element of an array can be of any type and an array can hold
different types of elements

• The length property represents the length of the array (e.g., a.length)

• We can print the contents of an array by using alert

© 2018 Dept of Computer Science UMD 9

Definition of One-Dim Arrays

• Using literal form
• Comma separated list of elements within square brackets

var a = [2, 3, 5];
var b = []; // empty array

• Using Array constructor

var c = new Array();
var e = new Array(4); // defines array of size 4

• Example: ArraysOneDim.html

• Example: ArraysLengthProp.html

© 2018 Dept of Computer Science UMD 10

Two-Dimensional Arrays

• JavaScript does not support actual two-dimensional arrays

• You can simulate two-dimensional arrays by using an array of arrays

• About two-dimensional arrays

• You can pass them and return them from functions like one-
dimensional arrays

• Any modifications in the function will be permanent

• You can have ragged arrays

• Example: ArraysTwoDim.html

© 2018 Dept of Computer Science UMD 11

String Methods

• Comparison based on < and >

• concat – returns a new string representing concatenation of strings

• includes – determines whether one string is found within another

• startsWith – whether string begins with characters from another string

• endsWith – whether string ends with characters of another string

• indexOf – index of first character in string (or -1 if not found)

• lastIndexOf – index of last occurrence of character in the string (or -1 if not found)

• repeat – returns string repeated n times

• splice – extracts section of string

• split – splits a string into array of strings

• toLowerCase

• toUppserCase

• trim – trims whitespaces

• Example: StringMethods.html

• Reference:
• https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

© 2018 Dept of Computer Science UMD 12

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

Getting String Characters

• The function charAt or [] allows us to retrieve the character associated
with a particular index position in a string. Access is similar to array
indexing (first character at 0).

• Example

• var x = "Wednesday";

• var secondCharacter = x.charAt(1); // variable has "e";

• var lengthOfString = x.length; // variable has 9

• Example: CharAt.html

© 2018 Dept of Computer Science UMD 13

Array Methods

• fill - fill elements of an array
• concat - returns copy of joined arrays
• indexOf - returns position of element in array
• join - returns string with all elements in the array
• pop - removes & returns last element
• push - adds to the end (returns length)
• reverse - reverses the array
• shift - removes & returns first element
• unshift - adds new element to the beginning
• splice – adds and/or removes elements from an array

• Example: ArrayMethods.html
• Example: Sorting.html
• https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

© 2018 Dept of Computer Science UMD 14

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

instanceof Operator

• typeof returns “object” for all reference types

• instanceof operator

• Returns true if a value is an instance of the specified type and
false otherwise

• instanceof can identify inherited types

• Note: every object is an instance of Object

• Regarding arrays

• Although instanceof can identify arrays, use Array.isArray()
instead as instanceof will not work in all cases (e.g., when a array
is passed from one frame to another).

• Example: InstanceOf.html

© 2018 Dept of Computer Science UMD 15

let/const/

• No block scope so far (E6 introduces it)

• Example: NoBlockScope.html

• let replaces var for variable declarations and provides block scoping

• Example: BlockScope.html

• let is the new var

• const allows you to declare a constant variable that has block scope

• Example: const.html

© 2018 Dept of Computer Science UMD 16

for of

• Works on objects that have a method that returns an iterator

• Example: ForOf.html

© 2018 Dept of Computer Science UMD 17

Template Literals

• Allows you to replace placeholders in text

• Defined using the backtick character
• Placeholders identified with ${}

• Example: TemplateLiteral.html

© 2018 Dept of Computer Science UMD 18

Random Values

• Example: RandomValues.html

© 2018 Dept of Computer Science UMD 19

Null and undefined

• null indicates no value (nothing)

• undefined
• Value associated with uninitialized variables

• var x; // in a function
• Value returned by function when no explicit value is returned

(IMPORTANT case)
• Value associated with object properties that do not exist

• == considers null and undefined equal

• === considers null and undefined different

© 2018 Dept of Computer Science UMD 20

NaN

• NaN

• Generated when arithmetic operations result in undefined or
unrepresentable value

• Generated when attempting to coerce to a numeric value a non-
numeric value

• Global isNaN function  determines (returns true or false) whether
an argument is not a number. It attempts to convert the argument
to a number

• Number.isNaN() More robust version of isNaN()

© 2018 Dept of Computer Science UMD 21

NaN

• The following comparisons return false

NaN == NaN, NaN === NaN

• Remember  !isNaN() allow us to determine whether an expression is
a number

• Notice: isNaN(20)  False

• You may want to write a function call isNumber that returns
!isNaN(x)

• Example: NaN.html

© 2018 Dept of Computer Science UMD 22

Numeric Values

• Example: NumericValues.html

• Infinity is a global property

• isFinite() – returns false if argument is NaN, positive/negative
infinity; otherwise, it returns true.

• isFinite() vs. Number.isFinite()

© 2018 Dept of Computer Science UMD 23

About prompt

• Returns null when cancel is selected

• Example: Null.html, ValidityCheck.html

© 2018 Dept of Computer Science UMD 24

Debugging

• Chrome
• Select Inspect after loading the script, and Sources. This will open the debugger on

the rightmost pane. Click on a source line to set a break point.

• Chrome
• You can add in your code the statement debugger; which will invoke the debugger

when you run the script. To access the debugger, open the script, select Inspect,
and run. You will see the debugger on the rightmost pane.

• Firefox Debugger
• Open script you want to debug with Firefox
• You will find the debugger at ToolsWeb DeveloperDebugger
• To set a breakpoint click on the line number

• Right-click on a line number provides additional options
• Reload page to run script
• Typical stop, set over and step into option can be found on stop of “Sources” and

“Call Stack” tabs
• Call Stack – allows you to change stack frame

• http://www.cs.umd.edu/~nelson/classes/utilities/JavaScript/JavaScriptDebugging/

© 2018 Dept of Computer Science UMD 25

http://www.cs.umd.edu/~nelson/classes/utilities/JavaScript/JavaScriptDebugging/

