
Express

• Express is an abstraction layer on top of Node’s http-server

• Similar to JQuery is to JavaScript

• Express simplifies implementation of tasks that otherwise will require
significant effort using the http module

• What Express provides

• Extensions - The basic request and response objects have extra
functionality

• Middleware – Instead of a single function handling the requests a
stack of functions (middleware stack) is available. This allows
organizing the processing in separate functions

• Routing – Routing allow us to associate an URL and a HTTP method
with some functionality

• Views – Dynamic generation of HTML

© 2018 Dept of Computer Science UMD 1

Creating a Project in Node

• A Node project has a file called package.json providing information
such as project’s name, author, version, and dependencies (which
modules your project relies on)

• You can create this file yourself or you can rely on npm init

• Example: Let’s create a project

• To install Express and save it as dependency to package.json

• npm install express –save

• After installing you will see a directory called node_modules

• Example: example1.js

© 2018 Dept of Computer Science UMD 2

Middleware
• Middleware is a function

• In Node a single function processes the request; using middleware
the request can be processed by several functions.

• For example:
• One function can do authentication
• One function can do logging

• A request does not need to be processed by every middleware
function (any of them could provide a response). If none provides a
response the server will hang

• A middleware function can modify the request or response

• In app = express(), app is a function that goes through the set of
functions that are part of middleware stack

• app.use allow us to add middleware functions to the middleware
stack

• Example: middleware.js

© 2018 Dept of Computer Science UMD 3

Logger example

• We can log requests using a third party logger

• Installing morgan

• npm install morgan –save

• writeHead is used with text/html

• Example: loggingHTML.js

© 2018 Dept of Computer Science UMD 4

Serving Static Files

• express.static – part of Express

• Allow us to serve files

• path

• built-in module we use to generate a cross-platform (Windows,
Mac, Linux) path

• Example: servingFiles.js

© 2018 Dept of Computer Science UMD 5

Additional Functionality to request/response

• Express expands the request and response objects

• request.ip ip address

• request.get to obtain HTTP headers

• request.status to set status code

• request.send

• response.redirect

• Redirects to a particular site

• response.sendFile

• To send a file

• response.json sending s JSON response

• Example: additionalFunc.js

© 2018 Dept of Computer Science UMD 6

HTTP Verbs/Methods
• An HTTP request has a method/verb associated with it

• HTTP Methods
• GET

• Gets a resource
• Most common method used
• Idempotent (executing many times does not cause server change)

• POST
• Generates a change of server state (e.g., you bought an item)
• Non-idempotent

• PUT
• To update or change
• Idempotent

• DELETE
• To remove a resource
• Idempotent

• PATCH
• Relatively new
• Can be use to update

© 2018 Dept of Computer Science UMD 7

HTTP Verbs/Methods

• You can use Express to handle different HTTP verbs

• Download the curl application so you are able to generate http
requests with different methods/verbs
• https://curl.haxx.se/download.html

• Example: httpMethods.js

• You can issue the requests as follows
• GET  curl http://localhost:8001

• POST  curl –X POST http://locahost:8001

• PUT  curl –X PUT http://locahost:8001

• DELETE  curl –X DELETE http://locahost:8001

© 2018 Dept of Computer Science UMD 8

https://curl.haxx.se/download.html
http://localhost:8001/
http://locahost:8001/
http://locahost:8001/
http://locahost:8001/

Routing

• Routing - Mapping an URI and HTTP verb to a request handler

• In Express you specify routes using strings and can specify them as
regular expressions

• Example: routing.js

© 2018 Dept of Computer Science UMD 9

Dynamic Generation of HTML
• View/templating engines – Allow you to generate dynamic HTML

• EJS (Embedded JavaScript) engine is a templating engine that
compiles/generates HTML for you

• EJS is a superset of HTML

• Files with the .ejs extension are placed in a folder where Express can
locate them.

• To install ejs
• npm install ejs --save

• Interpolate variables in template file by using:

<%= variableName %>

• Inclusion of ejs file in another by using:

<% fileNameWithoutEJSExtension %> // Notice no = in <%

• Example: dynamicHTML.js, templates/welcome.ejs

© 2018 Dept of Computer Science UMD 10

Retrieving Query Arguments

• We can use request.query.<ARGUMENT_NAME> to retrieve
arguments provided in the URL

• Example: formGet.html, queryArguments.js, templates/courseInfo.js

© 2018 Dept of Computer Science UMD 11

Retrieving values associated with POST

• The body-parser module allows you to retrieve parameters
submitted using post by using request.body.<PARAMETER_NAME>

• To install

• npm install body-parser --save

• Example: formPost.html, postParameters.js, templates/courseInfo.js

© 2018 Dept of Computer Science UMD 12

References

• Express in Action

Writing, building, and testing Nodes.js applications

Evan M. Hahn

April 2016 , ISBN 9781617292422

© 2018 Dept of Computer Science UMD 13

