
HTTP Protocol
• HTTP session

• Sequence of network request-response transactions

• HTTP defines methods (verbs) that indicate the action to be performed on a specific
resource

• Methods

• GET Requests a particular resource (e.g., a file)

• POST Submits data to be processed by a particular resource (e.g. inputting data into a
database)

• HEAD Returns what GET returns, but without the actual resource (just headers)

• PUT Sends a representation of a particular resource

• DELETE Deletes the specified resource

• TRACE  Echoes received request so client can check if any changes have been made

• OPTIONS  HTTP method supported by the server for the specified URL

• CONNECT  Converts request connection to TCP/IP tunnel

• PATCH  To apply partial modifications to a resource

• HTTP servers must implement GET and HEAD and whenever possible OPTIONS

© 2018 Dept of Computer Science UMD 1

HTTP Protocol
• Response status codes (five classes)

• 1xx Informational

• 2xx Success

• 200  OK

• 3xx Redirection

• 4xx Client Error

• 401 Unauthorized

• 404  Not found

• Useful “Page Not Found” error messages

• http://www.evolt.org/node/4299

• 5xx Server Error

• Full listing at:

• http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

• Example (using telnet)

• http://www.cs.umd.edu/class/fall2005/cmsc433/HowWebServersWork.html

© 2018 Dept of Computer Science UMD 2

http://www.evolt.org/node/4299
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://www.cs.umd.edu/class/fall2005/cmsc433/HowWebServersWork.html

Web Services
• Web Service – Method of communication between two applications

• Web API (Application Programming Interface) that can be accessed over a
network and executed at a remote system

• Allows client applications to build interfaces to the service

• Web services share logic, data and processes through a programmatic interface
across a network

• Two kinds

• SOAP (Simple Object Access Protocol)

• REST (Representational State Transfer)

• In General

• REST  light-weight interactions

• SOAP  secure, reliable interactions

• Each has its advantages

• Example:
• http://code.google.com/apis/maps/documentation/webservices/#WebServices

© 2018 Dept of Computer Science UMD 3

http://code.google.com/apis/maps/documentation/webservices/#WebServices

Web Services
• Services can range from simple requests to complicated business processes

• Payment processing, content syndication

• Currency conversion, language translation

• Any internet protocol can be used to build web services but HTTP and XML
are often used

• By using web services your application can publish its functionality to the
world

• Web services can be created in any programming language

• Web services allow data exchange between different applications and
different platforms

• With web services a company billing system can connect with a supplier
server

© 2018 Dept of Computer Science UMD 4

Web Services (REST)

• REST (Representational State Transfer)

• An architectural style; not a protocol

• Allow different data formats (e.g., html, text, JSON)

• Advantages

• Fast, language, and platform independent

• Can use SOAP web services as the implementation

© 2018 Dept of Computer Science UMD 5

Web Services (REST)

• Resources are represented by URLs

• Resource  document, person, location

• Each resource has a unique URL

• Each resource does not need to have an actual
page/document. It can be generated dynamically

• A resource is considered a “noun”

• Operations are performed via HTTP methods (GET, POST, PUT,
DELETE)

• Methods are considered “verbs”

• REST  designed to operate with resource-oriented services
(locate/manipulate resource)

© 2018 Dept of Computer Science UMD 6

Web Services (REST)

• Example:

• Web service that allows individuals to manage file backups

• Each backup has an URL
http://backupFake.doesnotexist.org/backups/1938

• Using HTTP GET we can get the backup

• Using HTTP PUT we can update a backup

• Using HTTP POST we can upload a backup

• We can receive a URL that corresponds to the new backup

• Using HTTP DELETE we can delete a backup

• Notice that REST relies on a familiar approach (HTTP methods) to ask
for services (we don’t need to create a new interface/approach)

© 2018 Dept of Computer Science UMD 7

http://backupfake.doesnotexist.org/backups/1938

Web Services(SOAP)
• SOAP (Simple Object Access Protocol)

• XML-based protocol for accessing web services

• Platform and language independent

• Designed as a way to package remote procedure calls into XML wrappers

• Disadvantages

• Slow – Uses XML format that must be parsed to be read

• Consumes more bandwidth

• SOAP request

• XML document

• Has three components

• Envelop  defines document as SOAP request

• Body  provides information about the call and responses

• Optional header and fault elements

• SOAP response is an XML document

• SOAP cannot use REST because it is a protocol

• SOAP defines standards to be strictly followed

© 2018 Dept of Computer Science UMD 8

Web Services (Platform Elements)

• WSDL (Web Services Description Language)

• XML-based language for describing and locating web services

• W3C standard

• Similar to a contract that defines the interface that services offers

• It is machine-readable

• UDDI (Universal Description, Discovery and Integration)

• Directory service where companies can search and register for web
services described by WSDL

© 2018 Dept of Computer Science UMD 9

REST vs. SOAP

• https://www.javatpoint.com/soap-vs-rest-web-services

• SOAP is a procotol; REST architectural style

• SOAP can’t use REST as it is a protocol; REST can use SOAP web
services

• SOAP uses services interface to expose logic; REST uses URIs

• SOAP defines standards to be strictly followed; REST does not define
too many standards

• SOAP requires more bandwidth and resources; REST requires less

• SOAP defines its own security; REST inherits security from underlying
transport

• SOAP permits only XML data; REST permits different data format

© 2018 Dept of Computer Science UMD 10

https://www.javatpoint.com/soap-vs-rest-web-services

References

• http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

• https://www.javatpoint.com/soap-web-services

© 2018 Dept of Computer Science UMD 11

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://www.javatpoint.com/soap-web-services

Promises

• Promise - object that represents the eventual completion (or failure)
of an asynchronous operation.

• We attach callbacks to the promise object

• Allows promise chaining

• Execution of two or more asynchronous operations back to back
where results of one step are used by the next

• Example: PromisesBasics.html, PromisesFib.js

• Reference
• https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises

© 2018 Dept of Computer Science UMD 12

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises

Modules

• Immediately Invoked Function Expression

• Example: ImmediatelyInvokedFunctionExpression.html

• Example: ModuleImplementationViaIIFE.html

• Modules in Node

• Define your functions a file

• To export add the function to the exports object

• Example: https://nodejs.org/docs/v0.5.0/api/modules.html

© 2018 Dept of Computer Science UMD 13

https://nodejs.org/docs/v0.5.0/api/modules.html

Modules

• Two module specifications:

• CommonJS and AMD (Asynchronous Module Definition)

• AMD

• Designed with the browser in mind

• Popular implementation – RequiredJS

• CommonJS

• For general-purpose JavaScript (e.g., NodeJS)

© 2018 Dept of Computer Science UMD 14

