Announcements

* http://lesscss.org/

* http://learnlayout.com/

* Google Fonts API - https://developers.google.com/fonts/

* Open Source Web Design (Free web design templates)
* http://www.oswd.org/

e Color Palette Generator
e http://www.degraeve.com/color-palette/

© 2018 Dept of Computer Science UMD


http://lesscss.org/
http://learnlayout.com/
https://developers.google.com/fonts/
http://www.oswd.org/
http://www.degraeve.com/color-palette/

JSON

* JSON —JavaScript Object Notation

 Syntax for serializing objects, arrays, numbers, booleans, and null
* Based on JavaScript syntax, but distinct from it
* Some JavaScript is not JSON and some JSON is not JavaScript

e Lightweight data-interchange format

* Alternative to XML

* Derived from JavaScript but it is language independent
* JSON Example: http://json.org/example.html



http://json.org/example.html

JSON

 Methods

* JSON.parse() = parse a string as JSON (returns the Object
corresponding to the JSON text)

* JSON.stringify() = returns a string corresponding to the specified
value

* Examples and information:
https://www.w3schools.com/js/js json intro.asp

e References:
* https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global Objects/JSON

* Example: JSONExample.html

© 2018 Dept of Computer Science UMD 3


https://www.w3schools.com/js/js_json_intro.asp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON

Objects

* Property — association between a name and a value
 When the value is a function the property is referred to as a method

* Name can be any valid JavaScript string or anything that can be
converted to a String (that includes empty string)

* Any invalid property name can only be accessed using square
bracket notation

* Object — Collection of properties
* You can define your own; browser predefines a set of objects
* A property can be seen as a variable associated with a value
* Approaches to access and add properties
e Using dot-notation
* Using square brackets



Objects

 How to create objects
* Using Object constructor (e.g., new Object())
* Object constructor creates an object wrapper for the given value
 var x = new Object(true);

* |If the provided value is null or undefined an empty object will be
created

» Using object initializer/literal notation
* An initializer is a list of zero or more property names/values in { }
e Example: var x ={}, y = { radius: 20 }

* Using Object.create

* Example: Objects.html



Objects as Maps

* We can also view an object as an entity that associates values with
strings. How? Let’s first see how we can use the [ ] operator to access
properties

* You can use [ ] operator instead of . (period) operator

myObj.created =2 myObij[“created”]

* IMPORTANT: Notice that we have a string on the right side (“created”)
whereas on the left side it is a property (variable)

* Using [ ] operator can provide a nice alternative to add properties to an
object dynamically (when the program is executing)

* Example: AddingProperties.html



Object Type

 All objects in JavaScript are descended from Object
* In JavaScript objects have a property called prototype

* The prototype property points to an object from which properties are
inherited

* Objects inherit methods and properties from Object.prototype

* Prototype chain — Set of objects defined by the prototype property
* The end of the chain is a prototype property with the null value



Object.prototype

* Methods:
* Object.prototype.hasOwnProperty(prop)
 prop is a direct property (not inherited through the prototype chain)
* Object.prototype.isPrototypeof(obj)
e Object.prototype.toString()
* Returns a string representation of the object
* Object.prototype.valueOf()
e Returns the primitive value of the specified object



Enumerating Properties

* Three native ways to list/traverse object properties
* for...in loops

* Traverses all enumerable properties of the object and its
prototype chain

* Object.keys()

e Returns array with all the own (not in prototype chain)
enumerable properties

* Object.getOwnPropertyNames()

e Returns array with all own properties’ names (whether
enumerable or not)



Creating Objects Using Object.create

* You can also create object using Object.create()

* |t allows the specification of a prototype object for the object you
want to create

* Example: ObjectCreate.html



Function Properties and Methods

* In JavaScript every function is a Function object

* The Function constructor creates a new Function object
* Length property
* Example: FuncLength.html
Inside of a function two object exists
Argument = Has all the arguments passed into the function
Example: FuncArguments.html
this
» Reference to the context object the function is operating on
* Allows associating functions to object until runtime
 You can set the this value using apply(), call(), or bind()
e Example: FuncThis.html, FuncApplyCallBind.html



Creating Objects Using Constructor Functions

 To create a custom object you can:
* Create a function referred to as constructor function
e Convention is to use an uppercase initial letter

* Instantiate and initialize an object using new and the constructor
function

* Any function called with the new operator behaves as a constructor;
without it the function behaves as a normal function
* Example: ConstructorFunction.html

* Notice that in this example object creation is not efficient as we
duplicate the code for the functions (we will see a better alternative
later on)



Custom Type Definition

 ECMAScript 5 does not provide a way to define classes as in Java
 ECMAScript 6 does!
* Different approaches has been developed to address the creation of
objects associated with a particular abstraction
* Constructor Pattern
* Prototype Pattern
 Constructor/Prototype Pattern

* Example: ConstructorPattern.html
* Using constructor functions
 Disadvantage: duplicating info object



Prototype Pattern

* The Constructor pattern for custom type definition has some
disadvantages

* Each instance has its own copy of methods
* The Prototype pattern addresses this situation

* Example: PrototypePattern.html
* Notice that sharing is a problem for certain properties using the
Prototype Pattern
* How sharing of prototype takes place when a constructor function is used
to create an object using new:

1. JavaScript creates a new empty object and calls the function
with “this” referring to the new object

2. The prototype property of the new object is initialized to point
to the object referred to by the prototype property of the
constructor function

3. The new object is returned



Default Pattern for Custom Types

* The default pattern for custom type definition (“class definition”)
combines the constructor and prototype pattern

* Constructor pattern defines instance variables
* Prototype pattern defines common methods and properties

* Example: DefaultPattern.html

Note: Notice that even if instances for an object has been created
adding a property/method to the prototype will make it
immediately available



Inheritance

* Prototype chaining = primary method for inheritance
* We can assign a particular object to the prototype property
* Example: Inheritance.html



References

* Professional JavaScript for Web Developers, Third Edition, Nicholas C.
Zakas

* ISBN-13: 978-1118026694

* Programming with JavaScript: Algorithms and Applications for Desktop
and Mobile Browsers

* |ISBN-13: 978-0763780609
e Ajax in 10 Minutes” by Phil Ballard, ISBN 0-672-32868-2

* https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Guide/Working with Objects

* https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Inheritance and the prototype chain

© 2018 Dept of Computer Science UMD 17


https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain

