Array Methods

* Example: ArrayMethods*.html




Set Methods

* Example: SetMethods.html




Immediately Invoked Function Expressions

* Example: ImmediatelylnvokedFunctionExpression.html



Function Context

* Problem
* Example: FunctionContextincorrect.html

* How to address the problem
* Example: FunctionContextCorrect/a/b/c.html



Event Propagation

* Example: EventPropagation.html, EventPropagationControlled.html,
AccessingElementEventOcurred.html



Features

* In E6 (ECMAScript6) the key of a property can be a string or a symbol

* Computed Property Keys

* To specify the key of a property we can use a fixed name (e.g.,
student.name = “Mary”

» We can also use an expression in square brackets (computed property
key approach)

* Example: ComputedPropKeys.html
 Definition of methods without using function
* Main use case —symbols

e Define a symbol

* Use it as a property key that is unique



Features

* Object.assign(target, srcl, src2, ...)

 Combines enumerable own (non-inherited) properties of sources into
the target

* Returns target
* Example: ObjectMethods.html
* Can also be used to assign methods
* Object.is()
* Provides a more precise comparison alternative to ===
* Example: ObjectMethods.html



JavaScript Classes

E6 Classes provide a convenient syntax to define constructor functions
Defined using the class construct

A class body cannot contain properties (only methods)

Use static to define class methods, no static data members

Relies on constructor to define a constructor (not the class name)

A class, unlike a function, a class constructor cannot be invoked unless you use
new

» Student() call (assuming Student is a class will not work)

No need to use semicolons to separate method definitions. Using of commas is
forbidden

Unlike functions, class declarations are not hoisted
* Class definitions must be seen before using the class

Example: ClassDefinitionDeclaration.html

Previous example relies on class declaration approach for class definition. Class
expression is a second approach

Example: ClassDefinitionExpression.html



JavaScript Classes

* |If you don’t provide a constructor the following definition is used:
 constructor() {}

* You can define a subclass using extends
* Only single inheritance is supported
e Example: Subclass.html

* If you don’t provide a constructor in a derived class the following constructor is
used:

* Constructor(..arguments) {
super(...arguments)

}

* Private data
 Can follow convention of using _ for instance variables
* Will not actually protect the data
* Using WeakMaps
e Other approaches available

* Example: Private.html



Iterators

* Objects with interface designed for iteration

* An iterator object has:
* next() method — returns a result object
* result object — has two properties
 value — next value
* done — true when there are no more values
* Keeps a pointer



Generators

* Generator - function that returns an iterator

Code that can be paused and resume

Relies on function™ to define a generator function

yield operator — allows the generator to pause
* Generators can receive input/output using yield
* vield can only be used within generators

* vield cannot cross functions (e.g., yield cannot appear inside of a function that
is inside of the generator function)

next method — resumes execution
* The generator function returns a generator object

* Generators implement the interface Iterable
* Can be used by constructs that support iterables (e.g., for-of)

* Example: Generatorl.html, Generator2.html, GeneratorinClass.html

* You can have function expressions that create generators
* let mylterator = function *() { ... };



Iterable

* |terable- object with a Symbol.iterator property
* Symbol.iterator specifies function that returns an iterator for the object

* In ECMAScript 6 the following are iterables
* Arrays
* Sets
* Maps
* Strings
* [terables have been design to work with for-of loops
e for-of calls next() on each loop execution
* Loop stops when object’s done property is true
* Example: Iterablel.html

 for-of throws error on non-iterable object

* You can add iterator to custom types
* Example: Iterable2.html




Collection Iterators

* E6 has three collection types: arrays, sets, and maps. All are associated
with the following built-in iterators

 keys() = iterator for the keys
* values() = iterator for the values
* entries() = iterator for key/value pairs returned as a two-element
array
» Default iterator used by for-of
 Arrays and set = values()
* Maps -2 entries()

* WeakMaps and Weak do not have built-in iterators



Iterables and Spread Operator

» Spread operator (...) works on all iterables using the default iterator to
determine the elements to insert into the array

* Direct approach to covert iterable into array



References

* http://exploringjs.com/es6/
* Understanding ECMAScript 6 - ISBN-13:978-1-59327-757-4

© 2018 Dept of Computer Science UMD

15


http://exploringjs.com/es6/

