
Announcements

• Resources
• https://www.javascript.com
• https://www.javascript.com/resources
• Link checker - https://validator.w3.org/checklink
• http://jsforcats.com/
• http://www.htmldog.com/

• Tools
• https://developer.mozilla.org/en-US/docs/Tools

© 2018 Dept of Computer Science UMD 1

https://www.javascript.com/
https://www.javascript.com/resources
https://validator.w3.org/checklink
http://jsforcats.com/
http://www.htmldog.com/
https://developer.mozilla.org/en-US/docs/Tools

JavaScript

• JavaScript programming language that can appear in html pages

• It allow us to:
• To dynamically create web pages
• To control a browser application

• Open and create new browser windows
• Download and display contents of any URL

• To interact with the user
• Ability to interact with HTML forms

• Process values provided by checkbox, text, buttons, etc.

• Example: SqrTable.html

© 2018 Dept of Computer Science UMD 2

JavaScript

• JavaScript implements ECMAScript
• ECMAScript specification
• http://www.ecma-international.org/ecma-262/6.0/ECMA-262.pdf

• ECMAScript
• Web browsers are one host environment where it may exist

• ActionScript also implements ECMAScript

• JavaScript is more than ECMAScript

• JavaScript implementation includes
• ECMAScript
• DOM (Document Object Model)
• BOM (Brower Object Model)

• Browser support table at
• http://en.wikipedia.org/wiki/ECMAScript

© 2018 Dept of Computer Science UMD 3

http://www.ecma-international.org/ecma-262/6.0/ECMA-262.pdf
http://en.wikipedia.org/wiki/ECMAScript

JavaScript

• JavaScript engine  Process JavaScript code
• Safari  JavaScriptCore
• Chrome  V8
• Firefox  Spidermonkey

• To write JavaScript programs you need
• A web browser
• A text editor

• A JavaScript program can appear
• In a file by itself typically named with the extension .js
• In html files between a <script> and </script> tags.

• Client-Side JavaScript  the result of embedding a JavaScript
engine in a web browser

• Template for JavaScript Programs

• Example: TemplateJS.html

© 2018 Dept of Computer Science UMD 4

Processing HTML Page with JS

• DOM – Document Object Model

• Structured representation of the HTML page

• Every HTML element is represented as a node

• Browser uses HTML to build the DOM and can fix problems with the HTML so a
valid DOM is generated

• Lifecycle

• Set the user interface

• Parse the HTML and build the DOM

• Process (execute) JavaScript code

• Enter a loop and wait for events to take place

• When JavaScript is seen in a page, the DOM construction is halted and JavaScript code
execution is started.

• JavaScript can modify the DOM (e.g., creating / modifying nodes)

• One reason why <script></script> elements appear at the bottom of a page is to
guarantee elements elements JavaScript manipulates have already been created

© 2018 Dept of Computer Science UMD 5

Event-Handling

• Relies on a single-threaded execution model

• An event queue keeps track of events that have taken place, but
have not been processed (event-handler function for the event has
not been called)

• All generated events (whether are user-generated or not) are
placed in the event queue in the order they were detected by the
browser
• The browser mechanism that detects events and that adds them

to the event queue is separate from the thread that is handling
the events

• Browser periodically checks the event queue and if any event is
found it executes the appropriate handler (if one was defined)

© 2018 Dept of Computer Science UMD 6

Browser’s Global Objects

• Browser’s provides two global objects: window and document

• window object – represents the window in which a page resides
• Provides access to other global objects (e.g., document)

• Keeps track of user’s global variables
• Provides to JavaScript access to Browser’s APIs

• document object
• Property of the window object that represents the DOM of the

current page
• Via this object you can access / modify the DOM

© 2018 Dept of Computer Science UMD 7

Types of JavaScript Code

• Function Code

• Code contained in a function

• Global Code

• Code placed outside all functions
• Automatically executed by JS engine

• As in Java, a stack is used to keep track of function calls. Each
function call generates a function execution context (stack frame)

• There is one frame called the global execution context created
when the JS program starts executing. There is only one global
execution context (at the bottom of the stack)

© 2018 Dept of Computer Science UMD 8

JavaScript Comments

• Comments in JavaScript

• Used to provide information to the programmer
• Used to identify sections in your code

• Ignored by the JavaScript interpreter

• Two types of comments
• Inline comment // This is a comment until the end of the line

• Block comment
/* The following is a comment

that spans several lines */

© 2018 Dept of Computer Science UMD 9

Variable Declarations

• Variable declaration (no type specification) var x;

• Variables names must start with a letter, underscore or dollar sign and
can be followed by any number of letters, underscores, dollar signs or
digits

© 2018 Dept of Computer Science UMD 10

JavaScript Data Types

• JavaScript has no class concept

• Two kinds of types:
• Primitive types – simple data stored as is
• Reference types – references to locations in memory

• Primitive data types in JavaScript
• Null – has value null
• Boolean – values true or false
• Number – numeric value
• String – character sequence delimited by single or double quotes
• Undefined – has as value undefined (values associated with

variables that are not initialized)

• typeof operator
• Returns string indicating the type of data
• Note: typeof null  returns “object”

© 2018 Dept of Computer Science UMD 11

JavaScript Data Types

• Reference types represents objects in JavaScript

• Reference values are instances of reference types and considered
objects

• Object – collection of properties
• Property – string that is associated with a value
• Value – could be a primitive, object, function

• Object creation
var myFirstObject = new Object();
var mySecondObject = {

id: 789,
name: "Rose Smith"

}; // object literal

• JavaScript relies on garbage collection
• When an object is no longer needed set the variable to null

© 2018 Dept of Computer Science UMD 12

Conversions

• In JavaScript you don’t specify the type of variables

• Most of the time implicit transformations will take care of
transforming a value to the expected one

• Example:

var age = 10;

var s = “John Age: “ + age;

• Mechanism to transform values:
• Converting number to string

var stringValue = String(number);
• Converting string to number

var number = Number(stringValue);
var number = parseInt(stringValue);
var number = parseFloat(stringValue)

© 2018 Dept of Computer Science UMD 13

JavaScript (Comparisons)

• You can compare values by using the following operators

• === → Return true if the values are equal, false otherwise
(e.g., x === y)

• !== → Returns true if the values are different, false otherwise
(e.g., x != y)

• == and !=  Not as strict as previous equality operators
• Relational Operators

• < → Less than
• > → Greater than

• <= → Less than or equal
• >= → Greater than or equal

© 2018 Dept of Computer Science UMD 14

JavaScript (Dialog Boxes)

• We can perform input and output via dialog boxes

• Input via prompt

• Example: InputOutput.html
• Notice we can define several variables at the same time
• prompt is a function that displays a dialog box with the

specified title. It can be used to read any data
• You can read numbers and strings via prompt

• prompt  returns a string

• If you need to perform some mathematical computation you
might need to explicitly convert the value read into a number

• alert used to display a messages in a dialog box

• Example: Network.html

© 2018 Dept of Computer Science UMD 15

JavaScript

• Constructs having same syntax /semantic similar to Java

• while, do while, for loops
• if statement

• cascaded if statements

• break statement

• switch statement

• Example: SqrTable.html

© 2018 Dept of Computer Science UMD 16

Strict Mode

• Allows for error checking both globally or within a function

• Use the strict mode pragma

• “use strict”;

• If pragma used outside of a function it applies to all the script

• It can appear in a function
function computeAvg() {

“use strict”;
}

• Example: Strict.html

• We need to use var

• Cannot use reserved words (interface, package, private, …)

© 2018 Dept of Computer Science UMD 17

References

• The Principles of Object-Oriented JavaScript by Nicholas C. Zakas
• ISBN: 978-1-59327-540-2

• Secrets of the JavaScript Ninja, Second Edition, by John Resig,
Bear Bibeault, Josip Maras
• ISBN-13: 978-1617292859

© 2018 Dept of Computer Science UMD 18

