
JS
Functions, Arrays and Strings

Pull from upstream!

Commit any changes first!

Functions

● Functions are Objects
● Name of a function is a reference value

Classic way to create a function:

function name (params){

statements

}

Logistical Items:

● Functions are invoked by using the () operator

● Don’t use var for parameters (e.g. function print(x, y))

● Parameters are passed by value

● There is no mandatory main function

● Returning values via return

How can I create a function?

1. With a function declaration

2. Function Expression

3. Shorthand Name

4. Arrow Function

3. Using a function constructor

Arrow Functions

● Alternative to anonymous functions
○ “Lambda Expressions”

● Rely on the => operator
● Format

○ Parameters => code
○ Parenthesis for parameters are only required if the function has no

parameters or 2 or more parameters. Function with one parameter do not
require parenthesis surrounding the parameters

○ If code is a single expression no curly braces nor return statement are
required

Practice

Write a function to take a word, w, and a number, n, then
return a string with the word, n number of times appended
together.

Fun Functions Facts

● Functions can be passed and returned from other
functions

● Be careful not to create functions in conditionals!
○ Especially when using ‘use strict’

● Default Parameters
○ Created formally in ES6
○ Named parameters will have default values if no parameter is passed

Rest Operator

● Collects remaining items of iterable into an array
● Uses a triple dot prefix (…x)
● Added in ES6

● Rest parameters
○ Rest operator appears at the end of the parameters list; it will receive all

remaining parameters
○ Stores the remaining parameters as an array

Spread Operator

● Also, added in ES6

● Opposite of rest operator
○ Converts items of an iterable (e.g., array) into arguments (for a function

call) or into elements of array
○ Uses triple dot (exactly like rest operator)
○ Can appear anywhere (not just at the end)
○ Can be used inside array literals

Arrays (One Dimensional)

● Collection of values that can be treated as a unit or
individually
○ a special type of objects
○ var a = new Array(4);

● As usual, access elements using []

Arrays can be of any type, and can even contain mixed type
elements.

Creating Arrays

● Literal form

● Using the Array Constructor

Destructuring

● Destructuring
○ A destructuring assignment allow us to unpack values from arrays, or

properties from objects, into distinct variables
○ Very similar to spread (in a way)

Last three (most) useful Array methods

● Map
○ “To each element, execute this function and place into an array”

● Reduce
○ “Accumulate the results into this value”

● Filter
○ “Filter the array results based on this criteria”

Two Dimensional Arrays

● JavaScript does not support actual two-dimensional
arrays
○ Can simulate two-dimensional arrays by using an array of arrays

● About two-dimensional arrays
○ Can be passed to or returned from functions like one-dim arrays
○ Any modifications in the function will be permanent
○ You can have ragged arrays

Array Methods

● fill - fill elements of an array
● concat - returns copy of joined arrays
● indexOf - returns position of element in array
● join - returns string with all elements in the array
● pop - removes & returns last element
● push - adds to the end (returns length)
● reverse - reverses the array
● shift - removes & returns first element
● unshift - adds new element to the beginning

Array Methods

● slice – selects elements in an array, as a new array
● splice – adds and/or removes elements from an array
● forEach

○ Calls a provided callback function once for each element in an array in
ascending order.

○ Not invoked for index properties that have been deleted or are
uninitialized

Example: arrayMethods.html, arraySlice.html, sorting.html

String Methods

● Comparison based on < and >
● concat

○ returns a new string representing concatenation of strings
● includes

○ determines whether one string is found within another
● startsWith

○ whether string begins with characters from another string
● endsWith

○ whether string ends with characters of another string
● indexOf

○ index of first character in string (or -1 if not found)

More String Methods
● repeat

○ returns string repeated n times
● splice

○ extracts section of string
● split

○ splits a string into array of strings
● lastIndexOf

○ index of last occurrence of character in the string (or -1 if not found)
● toLowerCase
● toUpperCase
● trim – trims whitespaces

Getting Characters from Strings

● The function charAt or [] allows us to retrieve the
character associated with a particular index position in a
string.
○ Access is similar to array indexing (first character at 0).

Typeof vs instanceof

● typeof
○ Returns “object” for all reference types

● instanceof operator
○ Returns true if a value is an instance of the specified type and false

otherwise
○ instanceof can identify inherited types

Every Object is an instance of an Object!

Example: instanceOf.html

● Works on objects that have a method that returns an
iterator

● Creates a loop iterating over iterable objects, including:
○ built-in String
○ Array
○ Array-like objects
○ TypedArray
○ Map
○ Set, and
○ user-defined iterables.

for -- of

Template Literals

● String literals that allow embedded expressions.
● Can replace placeholders in text with vars or exprs
● Defined using the backtick character

○ `embedded string expression`
○ Placeholders identified with ${varName}
○ To escape a back-tick in a template literal, use backslash before the

back-tick.

● Simpler for multi-line strings
○ Spaces now matter!

Null vs Undefined

● Null
○ a value indicating no value (nothing)
○ Type: “object”

● Undefined
○ Value associated with uninitialized variables
○ Type: “undefined”
○ Example:

■ var x; // in a function
○ Value returned by function when no explicit value is returned

(IMPORTANT case)
○ Value associated with object properties that do not exist

Truthy vs Falsy

● A falsy value is:
○ A value that is considered as false in a Boolean context
○ Falsy values are:

■ False
■ 0
■ “”
■ Null
■ Undefined
■ NaN

● A truthy value is:
○ A value that is considered as true in a Boolean context
○ All values are truthy unless they are defined as falsy

Other Notable Methods

● Math.random()- Random number

● isNaN()- Attempts to convert to a number

● Number.isNaN()- Better version, tests before converting

● isFinite()- What makes this false?

● Number.isFinite()- Similar to Number.isNaN() in execution

Debugging

● Select Inspect after loading the script, and Sources. This
will open the debugger.

● Click on a source line to set a breakpoint.

● Alternatively, you can add in your code the statement

debugger;

which will invoke the debugger when you run the script

WTWAW

After today make sure you know:

● How to Create functions in 4 ways
● How to create arrays
● How to use methods to manipulate a String
● Be able to embed data using String literals

