
JS Intro

Please pull from upstream!

JavaScript
● Finally some programming!

● JavaScript is a programming language that allows us to:
○ Create interactive web pages
○ Control a browser application

■ Open and create browser windows
■ Download and display contents

○ Interact with the user
○ Interact with HTML Forms

JS and ECMAScript
● JavaScript implements ECMAScript

What is ECMAScript?

● A scripting language standard
● ActionScript and JScript are other implementations

How is JavaScript different?

JavaScript implementation includes:

● ECMAScript
● DOM (Document Object Model)
● BOM (Browser Object Model)

JavaScript Engine
● JavaScript engine process JavaScript code

○ Safari: JavaScriptCore
○ Chrome: V8
○ Firefox: Spidermonkey
○ Edge: Chakra

● To write JavaScript programs you need a web browser
and a text editor

● A JavaScript program can appear:
○ In a file by itself typically named with the extension .js
○ In html files between a <script> and </script> tags.

Example: templateJS.html

Notable Changes To JavaScript
● ECMAScript 5

○ Added “use strict”
○ Added more JSON support
○ Added Array iteration methods

● ECMAScript 2015
○ Added let and const
○ Added default parameter values
○ More Array Methods
○ Classes!

● More recently: ECMAScript 2018
○ Added Asynchronous iteration
○ Added rest/spread properties

What is “use strict”?
● JavaScript's strict mode, introduced in ES5
● A way to opt in to a restricted variant of JavaScript,

thereby implicitly opting-out of "sloppy mode".
● Several changes to normal JavaScript semantics:

○ Makes JavaScript silent errors throw errors
○ Prohibits some syntax likely to be defined in future versions of

ECMAScript.

● Examples not allowed
○ Declaring function in blocks if (a < b) { function f() {} }
○ Setting a value to an undeclared variable

Processing HTML with JS
● DOM – Document Object Model

○ Structured representation of the HTML page
○ Every HTML element is represented as a node
○ Browser uses HTML to build the DOM and can fix problems with the

HTML so a valid DOM is generated

● Lifecycle
○ Set the user interface

■ Parse the HTML and build the DOM
■ Process (execute) JavaScript code

○ Enter a loop and wait for events to take place

Processing HTML with JS
● When JavaScript is seen in a page, the DOM construction

is halted and JavaScript code execution is started.

● JS can modify the DOM (e.g., creating, modifying nodes)
○ One reason why <script></script> elements appear at the bottom of a

page (speed)

Processing HTML with JS
● When JavaScript is seen in a page, the DOM construction

is halted and JavaScript code execution is started.

Moral of the story:

JS can modify the DOM (e.g., creating, modifying nodes)
but elements the DOM have to be built before using them!

○ One reason why <script></script> elements appear at the bottom of a
page (speed)

Event Handling
● Relies on a single-threaded execution model
● An event queue keeps track of events that have taken

place, but have not been processed (event-handler
function for the event has not been called)

● All generated events (whether are user-generated or not)
are placed in the event queue in the order they were
detected by the browser
○ The browser mechanism that detects events and that adds them to the

event queue is separate from the thread that is handling the events

Browser’s Global Objects
● Browsers provide two global objects: window and

document
● window object – represents the window in which a page

resides
○ Provides access to other global objects (e.g., document)
○ Keeps track of user’s global variables
○ Allows JavaScript to access Browser’s APIs

● document object
○ Property of the window object that represents the DOM of the current

page
○ Via this object you can access & modify the DOM

Types of JavaScript Code
● Function Code

○ Code contained in a function

● Global Code
○ Code placed outside all functions
○ Automatically executed by JS engine

● As in Java, a stack is used to keep track of function calls.
Each function call generates a function execution context
(stack frame)

● There is one frame called the global execution context
created when the JS program starts executing.

How do we run JavaScript?
● Chrome (or any browser)

○ Right click -> inspect

● Node
○ Make sure you have it installed!

● Within HTML

Console object
● Allow us to view JavaScript errors and user messages
● console object functions

○ log : General message
○ info : Informational message
○ error : Error message
○ warn : Warning message

Let’s test them in the browser!

Dialog Boxes- Our go-to user input
● We can perform input and output via dialog boxes
● Input via prompt

○ returns a string

If you need to perform some mathematical computation you
might need to explicitly convert the value read into a number

JavaScript Comments
● Comments in JavaScript

○ Used to provide information to the programmer
○ Used to identify sections in your code
○ Ignored by the JavaScript interpreter

● Two types of comments
○ Inline comment // This is a comment until the end of the line
○ Block comment /* The following is a

comment that spans

several lines */

var vs let vs const
var: how variables were created pre-ECMA2015

● Does not have block scope
● Kind of a loose cannon

let: defines a binding

● Can’t be accessed outside a block
● More “strict”

const: Creates a constant that cannot be modified after it’s
initial assignment

JavaScript Data Types
● JavaScript has no class concept (at least until ES6)
● Two kinds of types:

○ Primitive types – simple data stored as is
○ Reference types – references to locations in memory

● Primitive data types in JavaScript
○ Null – has value null
○ Boolean – values true or false
○ Number – numeric value
○ String – character sequence delimited by single or double quotes
○ Undefined – has as value undefined (values associated with variables

that are not initialized)

JavaScript Data Types cont.
● Object – collection of properties

○ Property – string that is associated with a value
○ Value – could be a primitive, object, function

Reference types represents objects in JavaScript

Reference values are instances of reference types and
considered objects

typeOf

typeof operator
○ Returns string indicating the type of data
○ Note: typeof null will returns “object”

Type Conversion
● Most of the time implicit transformations will take care of

transforming a value to the expected one
● Example:

○ var age = 10;
var s = “John Age: “ + age;

● Mechanism to transform values:
○ Converting number to string

■ var stringValue = String(number);

○ Converting string to number
■ var number = Number(stringValue);
■ var number = parseInt(stringValue);
■ var number = parseFloat(stringValue)

Control Structures
All are the same as Java:

● While, do while, for loops
● If statements

○ nested/cascading

● Switch
○ break

Primitive Wrapper Types
● JavaScript promptly coerces between primitives and

objects when a property of the type is accessed.

● Three wrapper types: Boolean, String, and Number
● Primitive wrapper types simplify working with primitives
● Wrapper types are automatically created when needed

Comparisons
● You can compare values by using the following operators

○ === Return true if the values are equal, false otherwise (e.g., x === y)
○ !== Returns true if the values are different, false otherwise (e.g., x !==

y)

● == and != Attempt type conversion (coercion)
● Relational Operators

○ < Less than
○ > Greater than
○ <= Less than or equal
○ >= Greater than or equal

Object Creation
● Object creation

var myFirstObject = new Object();
var mySecondObject = {

firstName: ‘Nikola’,
lastName: ‘Tesla’

}; // object literal

● JavaScript relies on garbage collection
○ When an object is no longer needed set the variable to null

We’ll talk about this more later!

What is “use strict”?
● JavaScript's strict mode, introduced in ES5
● A way to opt in to a restricted variant of JavaScript,

thereby implicitly opting-out of "sloppy mode".
● Several changes to normal JavaScript semantics:

○ Makes JavaScript silent errors throw errors
○ Prohibits some syntax likely to be defined in future versions of

ECMAScript.

● Examples not allowed
○ Declaring function in blocks if (a < b) { function f() {} }
○ Setting a value to an undeclared variable

Strict Mode
● Allows for error checking both globally or within a function
● Use the strict mode pragma

○ “use strict”;

● If pragma used outside of a function, it applies to all the
script

● It can appear in a function or out
● Forces variables to be declared first
● Cannot use reserved words

Built-in Types
● Object – generic object
● Array – list of values (numerically indexed)
● Function
● Error – runtime error
● Date – date / time
● RegExp – regular expression

Many of built-in type have a literal form that enables you to define a value without explicitly
creating an object (using new)

The typical function definition is based on a literal form.

Global Objects
● ECMAScript defines a global object
● All functions and variables defined globally become part of

the global object
● Some functions that are part of the Global object

○ isNaN()
○ parseFloat()
○ parseInt()
○ eval() : evaluates JS code represented as a string
○ isFinite()
○ decodeURI()

Global Object
● Some properties that are part of the Global object

○ NaN
○ undefined
○ Object : Constructor for Object
○ Array : Constructor for Array
○ Function : Constructor for Function
○ Number : Constructor for Number
○ String : Construct or for String
○ Date : Construct
○ Error : Constructor
○ RegExp : Constructor

● ECMAScript also defines the Math object

