
1

Lab	-	Fragments	

Objectives:	
Familiarize yourself with the Fragment class. Create a simple application that uses Fragments to
produce a two-pane or single-pane user interface depending on the current device’s screen size.

After completing this Lab you should better understand the Fragment class and its lifecycle, and how
Fragments interact with the Activities that host them.

Exercise:	Fragments	
In this exercise you will create an application that uses Fragments to display simulated1Twitter Tweets.
This application will present multiple Fragments arranged in different layouts depending on the
device’s screen size. One of these Fragments, called the FriendsFragment, will display the names of
several celebrities. If the user selects a name from this Fragment, he or she will see several simulated
Twitter Tweets from these people, appearing in a second Fragment, called the FeedFragment. For this
Lab, the number and identity of the celebrities will be fixed (once you learn more about User Interface
classes, Networking, and Services, you may want to extend this application into a more general Twitter
feed reader).

The graphics below depict the application’s user interface when running on a typical small screen
device (e.g., a smartphone). This layout will be called the single-pane layout:

1 The Twitter API requires a network connection and authentication in order for your application to
retrieve Twitter data. Because we have not yet discussed networking, this application will only simulate
a live Twitter feed.

Figure 1: When user clicks on a celebrity's name, they see Twitter tweets
from that celebrity.

2

To implement this user interface, you will implement two Fragments; one called FriendsFragment and
the other called FeedFragment. The FriendsFragment, displayed on the left of the figure above, is a
subclass of ListFragment. If the user selects a celebrity name from this ListFragment, then the Tweets
from that person will be displayed in the FeedFragment. The FeedFragment displays a single TextView,
wrapped in a ScrollView, containing all the tweets for a single celebrity. If the user hits the back button
when the FeedFragment is visible, the application should return to the previous View in which the
FriendsFragment was visible.

When running on a larger-screen tablet, however, the application will present a different user interface,
as shown below. This layout is called the two-pane layout.

In this case, the application displays both Fragments at the same time. You will implement the code that
manages the application layouts. Note: You are not going to create two different applications. You are
going to create a single application that works whether the particular device it’s running on is small or
large. Look at the documentation (http://developer.android.com/guide/practices/tablets-and-
handsets.html) for more information about multi-pane user interfaces here.

See the FragmentsLabPhone.mp4 screencast to see the app in action on a phone. See the
FragmentsLabTablet.mp4 screencast to see the app in action on a tablet.

Implementation	Notes:	
This exercise is quite similar to the applications discussed in the lecture (as always, download and
examine the source code for the example applications from the class source code repository). We have
provided you with an application skeleton, including all necessary layout and resource files. Don’t
change any resource IDs in these files as that might break the Lab’s test cases.

Figure 2: A two-pane user interface used when the device is a
Tablet.

3

You will need to modify two areas within the Lab’s source code. Both of these areas are marked with a
comment containing the word “TODO.” Both are in the MainActivity.java file. To do this, you will
need to examine and understand the resource IDs contained in the main_activity.xml files that are in
res/layout and res/layout-large directories.
1. In MainActivity.java, find “TODO 1.” Add the source code needed to add the FriendsFragment to

the two-pane layout.
2. In MainActivity.java, find “TODO 2." Add the source code to replace the FeedFragment displayed

in the single-pane layout.

Testing	and	Submission:	

The test cases for this Lab are in the Lab3c_FragmentsLabTestPhone and
Lab3c_FragmentsLabTestTablet projects. The Lab3c_FragmentsLabTestPhone test case should be run
on a phone. The Lab3c_FragmentsLabTestTablet should be run on a Tablet (we used the Nexus 7). You
can run the test cases by right clicking a particular Test project folder and then selecting Run
As>Android Junit Test, or one at a time, by right clicking on an individual test case class and then
continuing as before. The test classes are Robotium test cases.

To Submit your solution execute the following commands from inside your repo:

git status (you should see a list of the files you’ve changed or added)
git add .
git commit –m “completed Lab3_Fragments submission”
git push origin master

As you implement various steps of the Lab, run the test cases every so often to see if you are making
progress toward completion of the Lab. Once you’ve passed all the test cases locally, follow the
instructions on the Assignment page to submit your work to the Coursera system for grading. This Lab
has two test cases, one for phones and one for tablets. We'll run both test cases against the single zip
file you submit.

Warnings:

1. These test cases have been run on the emulator using a Galaxy Nexus AVD with API level 21 with

768MB of RAM (for the phone test) and a Nexus 7 at API level 21 with 768MB of RAM (for the
tablet test). To limit configuration problems, you should test your app against similar AVDs.

Extras:

This assignment may be too easy for those with strong programming backgrounds. If you fall into that
category, here are some suggestions for more challenging enhancements you can make to the
application.

1. Add the necessary code so that the application maintains its state (which Friend and/or Feed is

selected) after a reconfiguration.

4

2. Instrument the application to monitor the lifecycle callbacks for both the Activity and the Fragment
classes.

3. Take a deeper look at the issue of supporting multiple screens. We handled this by defining two
different main_activity.xml files, one for large devices and one for smaller devices. Read through
the documentation (http://developer.android.com/guide/practices/screens_support.html) on
Supporting Multiple Screens. After reading this over, go back and look at your application. Could
you come up with a way to have layouts that are different for small devices in landscape mode,
small devices in portrait mode, and a large device (two-pane layout)?

