
1	
	

Lab	–	User	Interface	Classes	
Create	a	complex	user	interface	with	Android’s	user	interface	classes	

Objectives:	
Familiarize yourself with Android’s User Interface (UI) classes. Create a simple application that uses a
variety of UI elements including: Buttons, TextViews and Checkboxes. You will also reinforce the
knowledge you've gained in previous lessons by implementing a larger portion of the application from
scratch.

Overview:	
In this Lab, you will create a ToDo Manager application. The application creates and manages a list of
ToDo Items (i.e., things that you need “to do.”) You will design this application’s user interface, includ-
ing its layout and resource files. You will also implement a bit more of the application’s features than
you did in previous Labs. Do NOT modify any resource IDs contained in the skeleton layout files as this
may break our test cases.

Exercise	A:	The	Basic	ToDo	Manager	
The main Activity for this application is called Lab4_UILabs. When the Activity runs, but there are no
previously saved ToDo Items, its initial UI will look something like this:		

	
This user interface contains a single ListView that displays all existing ToDo Items. As shown above,
the last row of the ListView always displays a special View, with the words, “Add New ToDo Item.”	
This last position within the ListView is known as the “footer.” You can add a View to the footer by us-
ing the ListView’s addFooterView() method.

Figure 1: Initial View

2	
	

When the user clicks on the ListView footer, the application will start a new Activity called AddToDo-
Activity that allows the user to create and save a new ToDo Item.

	
	
ToDo items have at least the following fields. Default values appear in bold:

• Title: A user-provided String. The default Title is the empty String ("").
• Status: one of {Done, Not Done}
• Priority: one of {Low, Med, High}
• Time & Date: A deadline for completing this ToDo Item. The default deadline is 7 days from

the current date and time.
This Activity's user interface includes the following buttons:

• Cancel – finish the Activity without creating a new ToDo Item.
• Reset – reset the fields of the ToDo Item to their default values and update the display to reflect

this.
• Submit – create a new ToDo Item containing the user-entered / default data fields and return it to

ToDoManagerActivity. When the application returns to ToDoManagerActivity, the new ToDo
Item should appear in the ListView.

Figure 2: Adding a New ToDo Item

3	
	

For example, if the user creates and submits a new ToDo Item to an empty ToDo list, then once the
application returns to the ToDoManagerActivity, its ListView will contain the new ToDo Item, as
shown below.

Back in the Main Activity, the user will be able to toggle the Done checkbox to indicate that the ToDo
Item's status has changed, say from Not Done to Done.

See the UILabs.mp4 screencast to see the app in action.

Implementation	Notes:	
1. From inside your local repo, run the following commands:

git fetch upstream master
git pull upstream master
You should now see a new directory named “Lab4_UILabs”. This directory contains the started
code you need to use to complete the lab exercise along with the accompanying tests.

Figure 3 (left): The user creates a new ToDo Item. Figure 3
(right) After submitting the new ToDo Item, the application
returns to the main Activity, displaying the new ToDo Item.

4	
	

2. Implement the project according to the specifications described above. To implement the Lab,
look for comments in the skeleton files containing the String "//TODO." As with previous Labs,
these comments contain hints as to what you need to do to complete the project. However, be
aware that from here on out these comments will become increasingly less comprehensive, re-
quiring you to make more decisions about how to implement the whole project. Some comments
have been removed altogether and only contain the “//TODO” string.

3. Don't forget that View's can be recycled in the ListAdapter's getView() method. When recycling
a View, you should clear out ALL the View's old state.

Testing	
The test cases for this Lab are in the Lab4_UILabTest project. You can run the test cases either all at
once, by right clicking the course.labs.todomanager.tests folder and then selecting Run ‘Tests in
‘course.labs..’, or one at a time, by right clicking on an individual test case class and then continuing as
before. The test classes are Robotium test cases.
As you implement various steps of the Lab, run the test cases every so often to see if you are making
progress toward completion of the Lab.
Warnings:		

1. These test cases have been tested on a Galaxy Nexus AVD emulator with API level 26. This
AVD uses a WVGA800 skin with 800x480dp resolution. To avoid configuration problems, you
should test you app against a similarly configured AVD. Also, when testing, make sure that your
device is in Portrait mode when the test cases start running.

2. On startup, these test cases delete all existing ToDoItems.
	

Submission	
As with your previous lab exercises, you need to push your changes to your remote repo on Gitlab.
Once you have made your final changes, commit your last changes with the commit message “com-
pleted Lab4_UILabs implementation”. As a reminder the steps to follow are:
git status (to see what files you have changed since your last commit)
git add path/to/each/file/you/want/to/commit/that/has/been/changed
git commit –m “your commit message”
git push origin master

Don’t forget to push or else we won’t be able to see your code.

If you got through Exercise A and submitted and passed the tests, and feel that you'd like to do more,
here are some suggested additions. This is optional and ungraded, but if you do something cool, please
consider posting some screenshots on the forums.

Optional	Exercise	B:	A	Prettier	ToDo	Manager	Application	
Right now the ToDo manager is quite ugly. Try modifying the layout files to create more attractive and
useable layouts. For example, play with the font size of the text, the amount of padding around the el-
ements, background colors and more.

5	
	

Optional	Exercise	C:	An	improved	ToDo	Manager	Application	
Modify your application so that ToDoItems whose status is Not Done are displayed in the Main
Activity with a different colored background than those whose status are Done. If you do this, then
when the user toggles the Done checkbox, the background color should also change as appropriate.
You might also consider changing the background color or adding a warning icon as the ToDo Item’s
deadline get close. Finally, right now, the user can't modify the ToDoItem's priority from the ToDoItem
ListView.	Modify this user interface so that it provides a drop down list, allowing users to select a
different Priority.

Optional	Exercise	D:	A	ToDo	Manager	Application	You	Might	Actually	Use	
Modify your application so that if the user long presses a ToDo Item in the Main Activity’s ListView, a
dialog pops up, allowing the user to delete the selected ToDo Item. If you're really feeling adventurous
place the app inside a Tab. Have one Tab display ToDoItems sorted by deadline, and another Tab for
ToDoItems first sorted by priority, and within a particular priority, further sorted by deadline.

Optional	Exercise	E:	ViewGroups	and	Layouts	
Open a new project with an empty activity and experiment with how the different ViewGroups can ar-
range elements on the screen. For example, how are classes like LinearLayout, RelativeLayout, Abso-
luteLayout, and FrameLayout different? How might you use them to create a layout like the alarm
clock display below? What would you do differently in the timer screen on the right? Try to recreate
these in the project you just created.

Hint: First focus on understanding how the main content of each screen is laid out (like the time and
display in the clock and the buttons in the timer) and then think about how you may incorporate that
content in the tabs.
	

							 	

