Laboratory — The Activity Class

Learn about the Activity class

Objectives:

Familiarize yourself with the Activity class, the Activity lifecycle, and the Android reconfiguration
process. Create and monitor a simple application to observe multiple Activities as they move through
their lifecycles.

Once you’ve completed this Lab you should understand: the Activity class, the Activity lifecycle, how
to start Activities programmatically, and how to handle Activity reconfiguration.

Part 1: The Activity Class

This part comprises two exercises. The goal of these exercises is to familiarize yourself with the
Android Activity Lifecycle, and to better understand how Android handles reconfiguration in
conjunction with the Activity Lifecycle.

Exercise A:

The application you will use in this exercise is called ActivityLab. When run it displays a user interface
like that shown below. We are providing the layout resources for this application. Do not modify them.

“=' Activity Lab

onCreate() calls: 1
onStart() calls: 1

lonResume() calls: 1
onRestart() calls: 0

Start Activity Two

This application comprises two Activities. The first Activity, called “ActivityOne,” outputs Log
messages, using the Log.i() method, every time any Activity lifecycle callback method is invoked:
onCreate(), onRestart(), onStart(), onResume(), onPause(), onStop() and onDestroy(). This Activity
should also monitor and display information about the following Activity class’ lifecycle callback
methods: onCreate(), onRestart(), onStart(), and onResume(). Specifically, the Activity will maintain
one counter for each of these methods. These counters count the number of times that each of these
methods has been invoked since ActivityOne last started up. The method names and their current
invocation counts should always be displayed whenever ActivityOne’s user interface is visible. Note:
Don't declare these counters to be static because in the next exercise I want you to get some
practice saving this state between reconfigurations.

When the user clicks on the Button labeled “Start ActivityTwo,” ActivityOne responds by activating a
second Activity, called “ActivityTwo.” As the user navigates between ActivityOne and ActivityTwo,
various lifecycle callback methods get called and all associated counters are incremented. ActivityTwo
displays a Button, labeled “Close Activity” to close the activity (the user may also press the Android
Back Button to navigate out of the Activity). Again, we provide you with the associated layout files, so
you don’t need to implement them and you shouldn’t modify them. Just like ActivityOne, ActivityTwo
will monitor four specific Activity lifecycle callbacks, displaying the appropriate method names and
invocation counts. It also outputs a log message each time ActivityTwo executes any lifecycle callback
method.

(] Activity Two

JonCreate() calls: 1
onStart() calls: 1
jonResume() calls: 1
lonRestart() calls: 0

Close Activity

Make sure that ActivityOne’s user interface displays the correct method invocation counts after the user
navigates from ActivityTwo back to to ActivityOne,.

'el Activity Lab

onCreate() calls: 1
onStart() calls: 2
lonResume() calls: 2
onRestart() calls: 1

Start Activity Two

A} -] =

See the screencast, ActivityNoReconfig.mp4, that's included in the Lab.

When a user reorients their Android device, changing, say, from Portrait mode to Landscape mode, or
vice versa, Android, will normally kill the current Activity and then restart it. You can reorient your
device in the emulator by pressing Ctrl+F12 (Command+F12 on Mac). When this happens, your
current Activity is killed and restarted, and Activity lifecycle callback methods are called.

'ﬁl Activity Lab

onCreate() calls: 2 =
onStart() calls: 3

lonResume() calls: 3

onRestart() calls: 1

Start Activity Two

In this exercise, you will modify your application from Exercise A so that the lifecycle callback
invocation counters maintain their running counts even though the underlying Activities are being
killed and recreated because of reconfiguration. If an Activity is killed normally (e.g., by clicking the
"Close Activity Two" button or by hitting the Back button) and later restarted by the user then the
counts should restart from zero.

To do this you will store, retrieve and reset the various counters as the application is being reconfigured.
Specifically, you will save the counts in a Bundle as the Activity is being torn down, and you will
retrieve and restore the counts from a Bundle as the Activity is being recreated.

See “Recreating an Activity” at https://developer.android.com/guide/components/activities/index.html
for more information on storing and retrieving data with a Bundle.

See the screencast, ActivityReconfig.mp4, that's included in the Lab.

1. Warmup Exercise: Before implementing the Exercises, do the following warm up exercise.
Create a text file called Activity.txt and record in it your answers to the questions below.

a) Open the ActivityLifecycleWalkthrough.pdf file. This chart depicts two state machines,
representing the lifecycles of ActivityOne and ActivityTwo. If you want, you can cut out the
little circles and use them as markers as you work through this exercise.

b) Suppose the user starts the application, which brings up ActivityOne. Next, the user presses
the Button to start ActivityTwo, and ActivityTwo then appears on the screen.

d)

a. List the Activity lifecycle methods that have been invoked on ActivityOne and on
ActivityTwo, since the application started, in the order that they occurred.

Next, suppose the user navigates back to ActivityOne by pressing the “Close Activity”
Button of ActivityTwo. ActivityTwo closes and then ActivityOne reappears. Starting where
you left off after the previous step:

a. List the Activity lifecycle methods that have been invoked on ActivityOne and on
ActivityTwo, in the order they occurred.

Next, the user presses the Button to start ActivityTwo again. Once ActivityTwo appears, the
user presses the Home Key on the device. Starting where you left off after the previous step:

a. List the Activity lifecycle methods that have been invoked on ActivityOne and on
ActivityTwo, in the order they occurred.

Next, the user starts the application again, by clicking on its icon in the Launcher. Once the
application has restarted, and starting where you left off after the previous step:

a. List the Activity lifecycle methods that have been invoked on ActivityOne and on
ActivityTwo, in the order they occurred.

Feel free to discuss your answers to these questions with your classmates once you have thought
about them on your own and come up with your own answers.

Exercise A: Checkout the application skeleton project from inside of Android Studio. To do this,
follow the tutorial we created on the course gitbook page you can find here:

https://cmsc436.gitbook.io/fall2018/checking-out-a-lab-exercise-branch

a)

Implement steps a through ¢ described below for both ActivityOne (in ActivityOne.java),
and for ActivityTwo (in ActivityTwo.java). Implement step d for ActivityOne and step e for
ActivityTwo.

a. Create four non-static counter variables, each one corresponding to a different one of
the lifecycle callback methods being monitored - onCreate(), onRestart(), onStart()
and onResume(). Increment these variables when their corresponding lifecycle
methods get called.

b. Create four TextView variables, each of which will display the value of a different
counter variable. If you open layout.xml file in the res/layout directory and examine
each <textview> element, you will see its id. The TextView variables should be
accessible in all methods and they should be initially assigned within onCreate().

c. Override the four lifecycle callback methods that you'll be monitoring. In each of
these methods update the appropriate invocation counter and call the displayCounts()
method to update the user interface.

d. Implement the OnClickListener for the launchActivityTwoButton. (for
ActivityOne.java only)

launchActivityTwoButton.setOnClickListener(new OnClickListener() {
public void onClick(View v) {
// This function launches ActivityTwo
// Hint: use Context’s startActivity() method

}

e. Implement the OnClickListener for the closeButton. (for ActivityTwo.java only)

closeButton.setOnClickListener(new OnClickListener() {
public void onClick(View v) {
// This function closes ActivityTwo
// Hint: use Context’s finish() method

}

Exercise B: implement the following extensions to the work you did in Exercise A. See
“Recreating an Activity” at
https://developer.android.com/guide/components/activities/index.html for information on
storing and retrieving data with a Bundle.

a. Implement the source code needed to save the values of the lifecycle callback invocation
counters. When an Activity is being killed, but may be restarted later Android calls
onSavelnstanceState(). This gives the Activity a chance to save any per-instance data it
may need if the activity is later restored. Note that if Android does not expect the
Activity to be restarted, then this method will not be called. For example, the method
will not be called when the user presses the Close Activity button in ActivityTwo,. See:
http://developer.android.com/reference/android/app/Activity.html, specifically the
onSavelnstanceState(android.os.Bundle) method for more information.

// Save per-instance data to a Bundle (a collection of key-value pairs).
public void onSavelnstanceState(Bundle savedInstanceState) {

}

b. Implement the source code needed to restore the values of the lifecycle callback
invocation counters. There are different ways to do this. For this Lab, implement the
restore logic in the onCreate() method.

protected void onCreate (Bundle savedInstanceState)
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_one);

// Has previous state been saved?

if (savedInstanceState !|= null){
// Restore value of counters from saved state

}
}

Another way you could do this (but not for this Lab) would be to override the
onRestorelnstanceState() method. Be sure you understand when and why this method is
called. See: http://developer.android.com/reference/android/app/Activity.html for more
information.

protected void onRestorelnstanceState (Bundle savedInstanceState) {
// Restore value of counters from saved state

}

Testing and Submission

Testing for this Lab will include some manual steps. We have done our testing on an emulator using a
Pixel XL with API level 26. To limit configuration problems, you should test your app against a similar
AVD. In addition, when testing, remember to start the tests with your device in Portrait mode and with
the screen unlocked. Also, if you have set your Developer Options to kill Activities when they go in to
the background, then these test cases will fail.

For this lab exercise we will be providing you with all of the tests that we would be using if we were
auto-grading them in an environment like the submit server (i.e. everyone should receive 100% for this
exercise!). We will, however, be inspecting your code and running the tests against them to verify the
correctness of your solutions. To run the tests in Android Studio right-click on the app <java <
course.labs.activitylab.tests directory and select “Run ‘Tests in ‘course.tests**+"”

app New >
man
java

i

Link C++ Project with Gradle

¥ cut %X
. [0 Copy %C
¢ CopyPath ©%C
Copy as Plain Text
Copy Reference X1{3C
([l Paste EQY
Find Usages SR
Find in Path... - 38F
ares Replace in Path... 18R
< Gradle! Analyze >
< buili
S puill Refactor >
i‘w::tdl Add to Favorites >
Jiloca Show Image Thumbnails 08T
Reformat Code 8L
Optimize Imports ~X0
Delete... (£
Run Tests in 'course.lab..." ~R
45 Debug 'Tests in 'course.lab.. ~{D
¥ Select 'Tests in 'course.lab...
Local History >
Git >

@ Synchronize 'tests'

Reveal in Finder

o o

When you are done implementing your solution and are passing all of the tests just commit your
solution to your repo on gitlab by following the steps on the course gitbook page tutorial you can view
by clicking here:

https://cmsc436.gitbook.io/fall2018/committing-your-local-branch-to-gitlab-for-submission

The test cases operate as follows:

Testl: StartActivityOneTest
1. Start the ActivityLab app
2. Record the lifecycle method invocation counts

Test2 : DoubleRotateActivtyOneTest
1. Start the ActivityLab app
Rotate the device to landscape mode
Rotate again to portrait mode
Record the lifecycle method invocation counts

Rl

Test3 : StartActivityTwoTest
1. Start the ActivityLab app
2. Click on the “Start Activity Two” button
3. Record the lifecycle method invocation counts

Test4 : DoubleRotateActivityTwoTest

Start the ActivityLab app

Click on the “Start Activity Two” button
Rotate the device to landscape mode

Rotate again to portrait mode

Record the lifecycle method invocation counts

M

Test5 : CloseActivityTwoTest
1. Start the ActivityLab app
Click on the “Start Activity Two” button
Click on the “Close Activity” button
Record the lifecycle method invocation counts

Rl

Test6 : ReopenActivityTwoTest

Start the ActivityLab app

Click on the “Start Activity Two” button

Click on the “Close Activity” button

Click on the “Start Activity Two” button again
Record the lifecycle method invocation counts

M

Challenge Activities

Activity Lab - Starting an Activity for a Result

Before you begin:

This problem will require you to change the Activity lab you’ve just completed, so please make sure
you do not overwrite any code that is needed for the graded submission. If we were not using Git (or
some other version control system) we would have to do something similar to copying the current
directory, renaming it and start a whole new Android Studio Project. Luckily, we are using Git. So all
you need to do now is follow the steps in this tutorial from the course Gitbook page on how to branch
off of a current branch inside of Android Studio:

https://cmsc436.gitbook.io/fall2018/creating-a-new-branch-for-the-challenge-activities

Problem Description:

In the Activity lab, you implemented an app that displays the number of times an Activity’s lifecycle
methods have been called. Your goal in this challenge problem is to alter that app so it displays the
cumulative number of times the method has been called during the entire run of the application. For
example, your app currently behaves likes this:

s ActivityLab

onCreate() calls: 1
onStart() calls: 1
onResume() calls: 1
onRestart() calls: 0

1. Launch the application.

Start Activity Two

2. Click “Start Activity Two”.

IS Activity Two

onCreate() calls: 1
onStart() calls: 1
onResume() calls: 1
onRestart() calls: 0 10

Close Activity

3. Click “Close Activity”.

S ActivityLab

onCreate() calls: 1
onStart() calls: 2
onResume() calls: 2
onRestart() calls: 1

Start Activity Two

And when you're finished with this problem, it should behave like this:

I ActivityLab

onCreate() calls: 1
onStart() calls: 1
onResume() calls: 1
onRestart() calls: 0

1. Launch the application.

Start Activity Two

2. Click “Start Activity 181 Activity Two

onCreate() calls: 2
onStart() calls: 2
onResume() calls: 2
onRestart() calls: 0

Close Activity

3. Click “Close Activity”.

ﬁ' ActivityLab

onCreate() calls: 2
onStart() calls: 3
onResume() calls: 3
onRestart() calls: 1

Start Activity Two

Hint: There are multiple ways you can implement this, but we suggest you think about how you can
use the startActivityForResult() method discussed in the video lecture. If you’d like more information
on the method, below are two resources that should help you get started:

Getting a Result from the Activity
(https://developer.android.com/training/basics/intents/result.html)

Allowing Other Apps to Start Your Activity
(https://developer.android.com/training/basics/intents/filters.html)

When you have the new app working, try adding a log statement to any new methods you've added and
watch Logcat to see when these new methods are being called within the lifecycle.

12

