Notifications Lab

Notifications and BroadcastReceivers

Objectives:

This week’s Lab explores User Notifications and Broadcast Receivers. After finishing this Lab, you
will have a better understanding of how to create and display different types of User Notifications in

order to inform users of your application’s actions. You will also learn how to broadcast and receive
Intents.

Exercise A:

This Lab involves an app that displays locally stored Twitter data from a set of friends. The basic
interface appears below.

] . @ 5:35 s " @ 5:35
. Lady Gaga - Go to http://t.co/W2NgZiTtOo to see
taylorSW|ft1 3 @Terry_World Terry Richardson's photos of me getting

ready for the show!

Lady Gaga - | love u! RT @BoyGeorge: Comeback? Babe
msrebeccablack I had no idea u went anywhere The 1st part was very

Liza | loved it! Such rich tones More of that! x

Lady Gaga - @TrollMarkus I felt so alive! All | remember
Iadygaga is the audience cheering! | could barely hear! Hands in

the air, smiles & flashes everywhere!

Lady Gaga - @gabicorradin30 breathing

Lady Gaga - That is correct. RT @dope_cinema:

only @LadyGaga would purposely put booing in

her performance hahah

Lady Gaga - @RobbyRizl it was a canvas, and | AM the
canvas during this performance

Lady Gaga - RT @leonardo_bv: @ladygaga The
choreography was perfect, mimetizing each era,
and the booing during Born This Way era was
such a great stat...

Lady Gaga - @LiamCalderone | wrote it special
for this performance!

Lady Gaga - RT @Born2BeBrave: @ladygaga

competition has no place in music, if people
want competition they can watch football. Music

When the application's MainActivity begins running, it determines whether any Tweet data has been
downloaded within the last two minutes. If not, it considers any existing data to be stale and therefore
downloads fresh Twitter data. To do the “downloading” step the Activity causes an AsyncTask to
execute, which will loads the Twitter data off of the main Thread. As the AsyncTask begins to
download the Twitter data, the application creates and displays a Toast message, alerting the users that
the download is starting. The Toast message is shown below:

] % 5:40

NotificationsLab

‘ Downloading Tweets from Network ’

The download process takes a noticeable amount of time. Therefore, it's possible that the might exit the
application while the download is in progress. If that happens, the application uses a Notification Area
Notification to inform the user once the download finishes. To do this, when the AsyncTask finishes
downloading the tweet data, it broadcasts an Intent. If the application's MainActivity is not running and
in the foreground when the Intent is broadcast, then the AsyncTask creates a Notification Area
Notification and places it in the Notification area. However, if the MainActivity is running and in the
foreground, then the AsyncTask does not create this Notification. Instead, it displays a Toast message
informing the user that the download is finished.

Specifically, the AsyncTask uses the sendOrderedBroadcast() method to broadcast an Intent once
downloading has finished. It also passes its own BroadcastReceiver into this call so that it can receive
the result of the broadcast. The MainActivity dynamically registers a BroadcastReceiver to receive this
Intent, only when the MainActivity is visible and in the foreground. If the BroadcastRecevier receives
this Intent, then it will return a specific result code, which lets the AsyncTask know that the
MainActivity is currently visible and in the foreground. If this result code does not arrive back to the
AsyncTask, then the AsyncTask assumes that the Activity is not visible and in the foreground and
therefore it will send the Notification Area Notification.

If the AsyncTask does send the Notification Area notification, an icon appears in the Notification Area

and the user can then examine the notification.

Ad i @ 7:42
Q Search Apps
i i [>] i |
PermissionsL.. DangerousApp YouTube Notifications..
NI, -
@ [=8

Activity Load.. API Demos Calculator

»€C ©

Camera Chrome Clock

Custom Locale DangerousApp Dev Tools

M N 4

| [J

Calendar

o

Contacts

&

Drive

r~
u

When the user pulls down on the Notification drawer, he or she will see an indication of whether or not
the data was successfully downloaded. An example is shown below:

Android

LTE &

100% @ 7:42

A

Corrupted Virtual SD carq
Virtual SD card is corrupf

CLEAR ALL

If the user clicks on this Notification's View, the MainActivity should re-open. Again, if the

MainActivity starts more than two minutes after the data was downloaded, then MainActivity should
download the data again. Otherwise, it should not.

Finally, if the download finishes while the MainActivity is visible and in the foreground, the app
displays a Toast message to that effect.

("] P 5:40

NotificationsLab

taylorswift13

msrebeccablack

ladygaga

Download completed successfully.

Implementation Notes:

1. Download the application skeleton files and import them into your IDE.
2. Implement the TODO comments found in the MainActivity.java and
DownloadTaskFragment.java files
In MainActivity.java.

a. Create a BroadcastReceiver that returns a result code (MainActivity.IS ALIVE) to
inform the AsyncTask that the MainActivity's active and in the foreground, and
therefore, the AsyncTask should not send the Notification Area Notification.

b. Register the broadcast receiver in the protected void onResume() method.

c. Unregister the broadcast receiver in the protected void onPause() method.

In DownloadTaskFragment.java.

d. Implement the logic to notify the user that the feed has been downloaded using
sendOrderedBroadcast(). You will need to create a BroadcastReceiver to receive the
result of this broadcast. If that result is not MainActivity.IS_ALIVE then this

BroadcastReceiver should create a Notification Area Notification and create a
NotificationChannel to support API level 26.

The test cases for this Lab are in the Lab6 Notifications project. You can run the test cases either all at
once, by right clicking the test package and then selecting Run ‘Tests in ‘course.lab...’, or one at a
time, by right clicking on an individual test case class and then continuing as before. The test classes
are Robotium test cases. As you implement various steps of the Lab, run the test cases every so often to
see if you are making progress toward completion of the Lab.

Warnings:

1. These test cases have been tested on a Galaxy Nexus AVD emulator with API level 26. To limit
configuration problems, you should test you app against a similar AVD.

2. These test cases will start the application, not at the MainActivity, but at another Activity
called, TestFrontEndActivity. If you look into the AndroidManifest.xml file for this application,
you'll see that both of these Activities are main entry points for the app. In fact, when you
install this app, two icons will appear in the launcher. This approach allows us to modify the
age of any already downloaded Tweet data before starting the MainActivity. The interface for
this Activity is shown below.

("] 4 @ 7:56

Make Tweets New
Make Tweets Old

Start Main Activity

Once you’ve passed all the test cases, submit your project to GitLab.

Submission

To submit your work you will need to commit your solution to your repo on GitLab by running the
following command: git push origin master.

Note: if you have not already pushed this branch to your repo on GitLab you will need to make a slight
modification for this first time and run this instead: git push —u origin master. This sets up tracking
between your local branch and a branch with the same name on your repo in GitLab.

