Notifications Lab

Notifications and BroadcastReceivers

Objectives:

This week’s Lab explores User Notifications and Broadcast Receivers. After finishing this Lab, you
will have a better understanding of how to create and display different types of User Notifications to
inform users of your application’s actions. You will also learn how to broadcast and receive Intents.

Exercise A:

This Lab involves an app that displays locally stored Twitter data from a set of friends. The basic
interface appears below.

419 0D 6 @ Sl |
NotificationsLab
. Lady Gaga - Go to http://t.co/W2NqZiTtOo to see @Terry_World

tﬂy|OrSWIfﬂ 3 Terry Richardson's photos of me getting ready for the show!
Lady Gaga - | love u! RT @BoyGeorge: Comeback? Babe | had
no idea u went anywhere The 1st part was very Liza | loved it!

msrebeccablack Such rich tones More of that! x
Lady Gaga - @TrolIMarkus | felt so alive! All | remember is the
audience cheering! | could barely hear! Hands in the air, smiles

Iadygaga & flashes everywhere!

Lady Gaga - @gabicorradin30 breathing

Lady Gaga - That is correct. RT @dope_cinema: only
(@LadyGaga would purposely put booing in her performance
hahah

Lady Gaga - @RobbyRizl it was a canvas, and | AM the canvas
during this performance

Lady Gaga - RT @leonardo_bv: @ladygaga The choreography
was perfect, mimetizing each era, and the booing during Born
This Way era was such a great stat...

Lady Gaga - @LiamCalderone | wrote it special for this
performance!

Lady Gaga - RT @Born2BeBrave: @ladygaga competition has
no place in music, if people want competition they can watch
football. Music is about art and e...

Lady Gaga - @BadKid_Earthfan aisle 5

Lady Gaga - @vuittonbrunette everyone always asks why?
Why did she do this? Why did she do that? My answer: For the
Applause!

Lady Gaga - @WonderBoyxGAGA for the fame monster! yellow
wig from the telephone video and monsterball!

Lady Gaga - So what did monsters think of my Vma

performance? Stay focused on your greatest competition:
yourself! #SnatchYourOwnWeave

When the application's MainActivity begins running, it determines whether any Tweet data has been
downloaded within the last two minutes. If not, it considers any existing data to be stale and therefore
downloads fresh Twitter data. To do the “downloading” step the Activity causes an AsyncTask to
execute, which will load the Twitter data off the main Thread.

As the AsyncTask begins to download the Twitter data, the application creates and displays a Toast
message, alerting the users that the download is starting. The Toast message is shown below:

| NotificationsLab
ladygaga

msrebeccablack

taylorswift13

Downloading Tweets from Network

The download process takes a noticeable amount of time. Therefore, it's possible that the user might
exit the application while the download is in progress. If that happens, the application uses a
Notification Area Notification to inform the user once the download finishes. To do this, when the
AsyncTask finishes downloading the tweet data, it broadcasts an Intent. If the application’s
MainActivity is not running and in the foreground when the Intent is broadcast, then the AsyncTask
creates a Notification Area Notification and places it in the Notification area. However, if the
MainActivity is running and in the foreground, then the AsyncTask does not create this Notification.
Instead, it displays a Toast message informing the user that the download is finished.

Specifically, the AsyncTask uses the sendOrderedBroadcast() method to broadcast an Intent once
downloading has finished. It also passes its own BroadcastReceiver into this call so that it can receive
the result of the broadcast. The MainActivity dynamically registers a BroadcastReceiver to receive this
Intent, only when the MainActivity is visible and in the foreground. If the BroadcastRecevier receives
this Intent, then it will return a specific result code, which lets the AsyncTask know that the
MainActivity is currently visible and in the foreground. If this result code does not arrive back to the
AsyncTask, then the AsyncTask assumes that the Activity is not visible and, in the foreground, and
therefore it will send the Notification Area Notification.

If the AsyncTask does send the Notification Area notification, an icon appears in the Notification Area
and the user can then examine the notification.

— 9

Notification Area Notification Sent

-~
-

When the user pulls down on the Notification drawer, he or she will see an indication of whether or not
the data was successfully downloaded. An example is shown below:

Silent notifications
@ Android System

USB debugging connected
Tap to tumn off USB debugging

@ Android System + Charging this device via USB

Manage Clear all

If the user clicks on this Notification's View, the MainActivity should re-open. Again, if the
MainActivity starts more than two minutes after the data was downloaded, then MainActivity should

download the data again. Otherwise, it should not.
Finally, if the download finishes while the MainActivity is visible and in the foreground, the app

displays a Toast message to that effect.

426 @ vy |
*m ‘Ju onsLab

taylorswift13

msrebeccablack

ladygaga

Download completed successfully.

1.
2.

Download the application skeleton files and import them into your IDE.

Implement the TODO comments found in the MainActivity.kt and DownloadTaskFragment.kt
files

In MainActivity.kt:

a. Create a BroadcastReceiver that returns a result code (MainActivity.IS_ALIVE) to
inform the AsyncTask that the MainActivity's active and in the foreground, and
therefore, the AsyncTask should not send the Notification Area Notification.

b. Register the broadcast receiver in the onResume() method after the super.onResume()
call.

c. Unregister the broadcast receiver in the onPause() method before the super.onPause()
call.

In DownloadTaskFragment.kt:

d. Implement the logic to notify the user that the feed has been downloaded using
sendOrderedBroadcast(). You will need to create a BroadcastReceiver to receive the
result of this broadcast. If that result is not MainActivity.IS_ALIVE then this
BroadcastReceiver should create a Notification Area Notification and create a
NotificationChannel to support API level 29.

The test cases for this Lab are in the Lab6_Notifications project. You can run the test cases either all at
once, by right clicking the test package and then selecting Run ‘Tests in ‘course.lab...’, or one at a
time, by right clicking on an individual test case class and then continuing as before. The test classes
are Robotium test cases. As you implement various steps of the Lab, run the test cases every so often to
see if you are making progress toward completion of the Lab.

Warnings:

1. These test cases have been tested on a Google Pixel 3 AVD emulator with API level 29. To
limit configuration problems, you should test your app against a similar AVD.

2. These test cases will start the application, not at the MainActivity, but at another Activity
called, TestFrontEndActivity. If you look into the AndroidManifest.xml file for this application,
you'll see that both of these Activities are main entry points for the app. In fact, when you
install this app, two icons will appear in the launcher. This approach allows us to modify the
age of any already downloaded Tweet data before starting the MainActivity. The interface for
this Activity is shown below.

433 A @ vy |

Er ctivity

Make Tweets New
Make Tweets Old

Start Main Activity

Once you’ve passed all the test cases, submit your project to GitLab.

Submission

To submit your work, you will need to commit your solution to your repo on GitLab by running the
following command: git push origin master.

