
1

Notifications Lab

Notifications and BroadcastReceivers

Objectives:
This week’s Lab explores User Notifications and Broadcast Receivers. After finishing this Lab, you

will have a better understanding of how to create and display different types of User Notifications to

inform users of your application’s actions. You will also learn how to broadcast and receive Intents.

Exercise A:
This Lab involves an app that displays locally stored Twitter data from a set of friends. The basic

interface appears below.

When the application's MainActivity begins running, it determines whether any Tweet data has been

downloaded within the last two minutes. If not, it considers any existing data to be stale and therefore

downloads fresh Twitter data. To do the “downloading” step the Activity causes an AsyncTask to

execute, which will load the Twitter data off the main Thread.

2

As the AsyncTask begins to download the Twitter data, the application creates and displays a Toast

message, alerting the users that the download is starting. The Toast message is shown below:

The download process takes a noticeable amount of time. Therefore, it's possible that the user might

exit the application while the download is in progress. If that happens, the application uses a

Notification Area Notification to inform the user once the download finishes. To do this, when the

AsyncTask finishes downloading the tweet data, it broadcasts an Intent. If the application's

MainActivity is not running and in the foreground when the Intent is broadcast, then the AsyncTask

creates a Notification Area Notification and places it in the Notification area. However, if the

MainActivity is running and in the foreground, then the AsyncTask does not create this Notification.

Instead, it displays a Toast message informing the user that the download is finished.

Specifically, the AsyncTask uses the sendOrderedBroadcast() method to broadcast an Intent once

downloading has finished. It also passes its own BroadcastReceiver into this call so that it can receive

the result of the broadcast. The MainActivity dynamically registers a BroadcastReceiver to receive this

Intent, only when the MainActivity is visible and in the foreground. If the BroadcastRecevier receives

this Intent, then it will return a specific result code, which lets the AsyncTask know that the

MainActivity is currently visible and in the foreground. If this result code does not arrive back to the

AsyncTask, then the AsyncTask assumes that the Activity is not visible and, in the foreground, and

therefore it will send the Notification Area Notification.

3

If the AsyncTask does send the Notification Area notification, an icon appears in the Notification Area

and the user can then examine the notification.

When the user pulls down on the Notification drawer, he or she will see an indication of whether or not

the data was successfully downloaded. An example is shown below:

4

If the user clicks on this Notification's View, the MainActivity should re-open. Again, if the

MainActivity starts more than two minutes after the data was downloaded, then MainActivity should

download the data again. Otherwise, it should not.

Finally, if the download finishes while the MainActivity is visible and in the foreground, the app

displays a Toast message to that effect.

5

Implementation Notes:
1. Download the application skeleton files and import them into your IDE.

2. Implement the TODO comments found in the MainActivity.kt and DownloadTaskFragment.kt

files

 In MainActivity.kt:

a. Create a BroadcastReceiver that returns a result code (MainActivity.IS_ALIVE) to

inform the AsyncTask that the MainActivity's active and in the foreground, and

therefore, the AsyncTask should not send the Notification Area Notification.

b. Register the broadcast receiver in the onResume() method after the super.onResume()

call.

c. Unregister the broadcast receiver in the onPause() method before the super.onPause()

call.

 In DownloadTaskFragment.kt:

d. Implement the logic to notify the user that the feed has been downloaded using

sendOrderedBroadcast(). You will need to create a BroadcastReceiver to receive the

result of this broadcast. If that result is not MainActivity.IS_ALIVE then this

BroadcastReceiver should create a Notification Area Notification and create a

NotificationChannel to support API level 29.

6

Testing:
The test cases for this Lab are in the Lab6_Notifications project. You can run the test cases either all at

once, by right clicking the test package and then selecting Run ‘Tests in ‘course.lab…’, or one at a

time, by right clicking on an individual test case class and then continuing as before. The test classes

are Robotium test cases. As you implement various steps of the Lab, run the test cases every so often to

see if you are making progress toward completion of the Lab.

Warnings:
1. These test cases have been tested on a Google Pixel 3 AVD emulator with API level 29. To

limit configuration problems, you should test your app against a similar AVD.

2. These test cases will start the application, not at the MainActivity, but at another Activity

called, TestFrontEndActivity. If you look into the AndroidManifest.xml file for this application,

you'll see that both of these Activities are main entry points for the app. In fact, when you

install this app, two icons will appear in the launcher. This approach allows us to modify the

age of any already downloaded Tweet data before starting the MainActivity. The interface for

this Activity is shown below.

Once you’ve passed all the test cases, submit your project to GitLab.

Submission
To submit your work, you will need to commit your solution to your repo on GitLab by running the

following command: git push origin master.

