Notifications Lab

Notifications and BroadcastReceivers

Objectives:

This week’s Lab explores User Notifications and Broadcast Receivers. After finishing this Lab, you
will have a better understanding of how to create and display different types of User Notifications to
inform users of your application’s actions. You will also learn how to broadcast and receive Intents.

Exercise A:

This Lab involves an app that displays locally stored Twitter data from a set of friends. The basic
interface appears below.

726 @ 5 o4 727 @ 5 v4n
NotificationsLab NotificationsLab
Lady Gaga - Go to http://t.co/W2NqZiTtOo to see @Terry
_World Terry Richardson's photos of me getting ready for
Iadygaga the show!

Lady Gaga - | love u! RT @BoyGeorge: Comeback? Babe |
msrebeccablack had no idea u went anywhere The 1st part was very Liza |
loved it! Such rich tones More of that! x
. Lady Gaga - @TrollMarkus | felt so alive! All | remember is
taleI’SWIfﬂ 3 the audience cheering! | could barely hear! Hands in the air,
smiles &mp; flashes everywhere!
Lady Gaga - @gabicorradin30 breathing
Lady Gaga - That is correct. RT @dope_cinema:
only @LadyGaga would purposely put booing in her
performance hahah

Lady Gaga - @RobbyRizl it was a canvas, and | AM the
canvas during this performance

Lady Gaga - RT @leonardo_bv: @ladygaga The
choreography was perfect, mimetizing each era, and the
booing during Born This Way era was such a great stat...

Lady Gaga - @LiamCalderone | wrote it special for this
performance!

Lady Gaga - RT @Born2BeBrave: @ladygaga competition
has no place in music, if people want competition they can
watch football. Music is about art and e...

Lady Gaga - @BadKid_Earthfan aisle 5

Lady Gaga - @vuittonbrunette everyone always asks why?
Why did she do this? Why did she do that? My answer: For
the Applause!

Lady Gaga - @WonderBoyxGAGA for the fame monster!
yellow wig from the telephone video and monsterball!

Lady Gaga - So what did monsters think of my Vma
N o

When the application's MainActivity begins running, it determines whether Tweet data has been
downloaded within the last two minutes. If not, it considers any existing data to be stale and therefore
downloads fresh Twitter data (the downloading process is simulated). To do the “downloading” step

the Activity causes an CoroutineAsyncTask to execute, which will load the Twitter data off the main
Thread.



As the download process begins, the application creates and displays a Toast message, alerting the
users that the download is starting. An example Toast message is shown below:

728 @ 5 v41

ladygaga
msrebeccablack

taylorswift13

2 Downloading Tweets from Network

In practice, the download process could take a noticeable amount of time. Therefore, it's possible that
the user might exit the application while the download is in progress. If that happens, the application
will generate a Notification Area Notification to inform the user once the download finishes. To do
this, the CoroutineAsyncTask broadcasts an Intent when it finishes downloading the tweet data. If the
application's MainActivity is not running and in the foreground when the Intent is broadcast, then the
CoroutineAsyncTask creates a Notification Area Notification and places it in the Notification area.
However, if the MainActivity is running and in the foreground, then the CoroutineAsyncTask does not

create this Notification. Instead, it displays a Toast message informing the user that the download is
finished.

Specifically, the CoroutineAsyncTask uses the sendOrderedBroadcast() method to broadcast an Intent
once downloading has finished. It also passes its own BroadcastReceiver into this call so that it will
receive the result of the broadcast. The MainActivity will dynamically register a BroadcastReceiver so
that it receives this Intent only when the MainActivity is visible and in the foreground. If the
BroadcastRecevier receives this Intent, then it will return a specific result code. The presence of this
code lets the CoroutineAsyncTask know that the MainActivity was visible and in the foreground. The
absence of this result code means that the Activity was not visible and in the foreground. In the latter
case, the CoroutineAsyncTask will create and send the Notification Area Notification.

2



If the CoroutineAsyncTask does send the Notification Area notification, an icon will appear in the
Notification Area and the user can pull down on the Notification Ares to further examine the
notification.

_ 9

& Notification Area Notification Sent
~ ~
6 ]
< ([ ] ] | ]

When the user pulls down on the Notification drawer, he or she will see an indication that the data was
successfully downloaded. An example is shown below:

Mon, Mar 7 ¥4 0100%

¥ Internet > 3 Bluetooth

© Do Not Disturb

e NotificationsLab A

Silent X

0 Virtual SD card
Tap to set up

@ Serial console enabled
Performance is impacted. To disable, c..

Manage Clear all



If the user clicks on this Notification's View, the MainActivity should re-open. Again, if the

MainActivity starts more than two minutes after the data was downloaded, then MainActivity should
download the data again. Otherwise, it should not.

Finally, if the download finishes while the MainActivity is visible and in the foreground, the app will
display a Toast message to that effect.

729 @ 5 v4n

\IV ; i ; ﬁl‘ '.

ladygaga
msrebeccablack

taylorswift13



N —

Download the application skeleton files and import them into your IDE.
Implement the TODO comments found in the MainActivity.kt and DownloadTaskFragment.kt
files
In MainActivity.kt:
a. Create a BroadcastReceiver that returns a result code (MainActivity.IS ALIVE) to
inform the CoroutineAsyncTask that the MainActivity's active and in the foreground,
and therefore, the CoroutineAsyncTask should not send the Notification Area

Notification.

b. Register the broadcast receiver in the onResume() method after the super.onResume()
call.

c. Unregister the broadcast receiver in the onPause() method before the super.onPause()
call.

In DownloadTaskFragment.kt:

d. Implement the logic to notify the user that the feed has been downloaded using
sendOrderedBroadcast(). You will need to create a BroadcastReceiver to receive the
result of this broadcast. If that result is not MainActivity.IS ALIVE then this
BroadcastReceiver should create a Notification Area Notification and create a
NotificationChannel.



Testing:

We will be manually looking at the code and testing the lab for 4 cases.

Please note that for testing instead of the MainActivity, we will use another activity called,
TestFrontEndActivity. If you look into the AndroidManifest.xml file for this application, you'll see that
both of these Activities are main entry points for the app. In fact, when you install this app, two icons
will appear in the launcher (Main Menu). This approach allows us to modify the age of already
downloaded Tweet data before starting the MainActivity. The interface for this Activity is shown

below on the left and the two icons in the launcher on the right.

818 @ 5 v4n

TestFrontEndActivity

Make Tweets New
Make Tweets Old

Start Main Activity

Test Case 1.1:

1. Start the TestFrontEndActivity app
2. Click on the “Start Main Activity” button
3. There should be no Toast or Notification

Test Case 1.2:

1. Start the TestFrontEndActivity app

2. Click on the “Make Tweets New” button
3. Click on the “Start Main Activity” button
4. There should be no Toast or Notification

8:34

Search your phone and more

o OoNON

Calendar

&

Drive

=

Messages

Camera

O

Files

s ]

Notificati...

|;|u

TestFront...

TMoble

Chrome

™

Gmail

WebView ..

Clock

~

Google

83

Photos

YouTube

4N

Contacts

?

Maps

©

Settings

©

YT Music



Start the TestFrontEndActivity app

Click on the “Make Tweets Old” button

Click on the “Start Main Activity” button

There should a Toast indicating downloading has started (use the “download _in_progress_string”
from string resources as the message displayed)

5. The app should be kept open till another Toast indicating whether the download succeeded or failed
(use “download_succes_string” and “download failed string” respectively from string resources as
the message displayed)

b=

Start the TestFrontEndActivity app

Click on the “Make Tweets Old” button

Click on the “Start Main Activity” button

There should a Toast indicating downloading has started (use the “download_in_progress_string”
from string resources as the message displayed)

Hide the app (let the app run in background)

6. There should be a notification indicating whether the download succeeded or failed

b=

N

After following the steps for each test case, the rest of the app should function in the same way
fragments lab did i.e., look at the first 2 images in this doc. Also take a look at the video attached for
how the testing flow would be.

Warnings:
1. These test cases have been tested on a Pixel 5 AVD emulator with API level 31. To limit
configuration problems, you should test your app against a similar AVD.

Once you’ve passed all the test cases, submit your project to GitLab.

Submission

To submit your work, you will need to commit your solution to your repo on GitLab by running the
following command: git push origin main.



