Lab — Intents

Objectives:

Familiarize yourself with Android Intents. You will create Intents and then use them to activate
Activities.

The Intent class

In this lab, you will use both explicit and implicit Intents to activate Activities. In one case, you will
start an Activity using the startActivity() method. In another case, you will start an Activity by using
startActivityForResult(). See http://developer.android.com/training/basics/intents/ for more
information.

The main Activity for this application is called ActivityLoaderActivity. It should display two Buttons,
one labeled “Explicit Activation” and one labeled “Implicit Activation.” It should also display one
TextView, initially displaying the words, “No Text Entered”.

345 0 @ 5 v4n

Explicit Activation

Implicit Activation

No Text Entered

http://developer.android.com/training/basics/intents/

The application should behave as follows. When the user clicks the “Explicit Activation” Button, the
ActivityLoaderActivity should launch a new Activity called ExplicitlyLoadedActivity. This activity
should display a user interface containing an EditText and a Button. An EditText object allows a user to

enter text.

346 O @ 5 v4n
Hello World!
Enter
You have sent an Explicit Intent!
< B o a 3
s
glwlel|r|t]yluli]olp

a s d f gh j k I
& z x ¢cvb nm@E

v o |

When the user clicks the “Enter” Button, this Activity should finish, returning the current contents of
the EditText object (seen above as ‘Hello World!) back to the ActivityLoaderActivity. Once the
ActivityLoaderActivity is again visible, any text that was returned from the ExplicitlyLoadedActivity
should appear in the ActivityLoaderActivity’s TextView object, as shown below.

349 D @ 5 *4n
Explicit Activation
Implicit Activation

Hello World!

When the user clicks on the “Implicit Activation” Button, the ActivityLoaderActivity will create an
implicit Intent, and then use it to implicitly activate a separate application to dial a dummy number
(555) 555-5555. Because multiple applications may be able to handle this Intent,
ActivityLoaderActivity will create and display an App Chooser (one example is shown below, but
yours may have a slightly different layout), allowing the user to select the specific application to handle
the Intent. For this assignment, the Chooser should display two choices: Android’s built-in Phone app
and a separate application you’ve created called MyDialer. To create an App Chooser, start by creating
an initial Intent to dial a number, (as part of this process you'll need to use the Uri class’ parse()
method). Then, create a second Intent, based on the first one, by calling the Intent class’
createChooser() method. Finally, start a new Activity using this second Intent. See this link for more
information about creating chooser Intents.

351 B @ 5

o] %

MyDialer Phone

If the user selects the Phone app from this chooser dialog, then that application will open and display
the number to be called. If the user instead selects the MyDialer application, then that application will
open and simply display the number in a TextView.

http://developer.android.com/training/basics/intents/sending.html

352 M @ 5 v4n

tel:5555555555

See the screencast in the download package to see the app in action.

Execute “git pull upstream main’ from inside your local class repo. You should see the following
projects inside the labs directory: Lab2 Intents and Lab2 MyDialer. For the Lab2 MyDialer project,
do the following.

1) Implement and deploy the Lab2 MyDialer application.

a) In Lab2 MyDialer’s AndroidManifest.xml file, add the appropriate Intent Filter to
MyDialerActivity so that Android will know that this Activity can dial a telephone number. To
indicate that the Activity can handle this type of Intent, you will need to add an <intent-filter>
to the <activity> in Lab2 MyDialer’s AndroidManifest.xml file. Be sure to add the correct
<action>, <category>, and <data> elements to an <intent-filter> element.

For the Lab2 _Intents project, perform the following steps.

2) In ActivityLoaderActivity.kt, implement launching the ExplicitlyLoadedActivity and returning the
text result to the ActivityLoaderActivity.

a) When the user clicks the “Explicit Activation” Button create an explicit Intent for launching the
ExplicitlyLoadedActivity.

b) In the ActivityLoaderActivity onActivityResult() will eventually be called. In that method you
should use Intent.getStringExtra() to read it back out. See
http://developer.android.com/training/basics/intents/result.html for more information.

3) In ExplicitlyLoadedActivity.kt, finish the Activity and return any user-entered text when the user
clicks the Enter Button.

a) To return the text, you can use the Intent().putExtra() method to store the text in an Intent to be
returned to the ActivityLoaderActivity. What key will you use when storing the text? You will
pass this Intent to the setResult() method, add an appropriate result code, and then call finish().

4) In ActivityLoaderActivity.kt, implement launching an unknown Activity to dial a phone number.

a) When the “Implicit Activation” Button is clicked you should create an implicit Intent indicating
that you want to a dial a phone number. The application should use an app chooser to display
Activities that are capable of dialing a phone number. See this for more information.

As explained above, you can find the skeleton code in the Lab's download package. Below are the list
of classes and methods you need to implement. You can find them in the code by looking for comments
with the String TODO:

1. In ActivityLoaderActivity.kt implement the following methods.

private void startExplicitActivation(): create an intent and start the ExplicitlyLoadedActivity.

http://developer.android.com/training/basics/intents/sending.html

private void startImplicitActivation(): create an Implicit Intent in public Intent getBaselntent()
and use the Intent.createChooser() method to select an application for dialing a phone number.
What action string should you use? Activate the user-selected Activity using this Implicit Intent.

protected void onActivityResult(int requestCode, int resultCode, Intent data): get the data that
is returned from the ExplicitlyLoadedActivity Activity and display it in the mUserTextView.
How do you find and access that TextView?

2. In ExplicitlyLoadedActivity.kt implement the following method.

private void enterClicked(): get user-entered text from the EditText, store it in an Intent, and
return it to the ActivityLoaderActivity.

3. In Lab2 MyDialer’s AndroidManifest.xml file, add the necessary intent filter tags. You'll need
to define the right <action>, <category> and <data> elements. What values should be used for
these? Remember that how you express certain values in Kotlin can be different than how you
express them in xml.

Testing

The test cases for this Lab are in the Lab2 Intents.. You can run the test cases either all at once, by right
clicking on the tests directory and then selecting Run ‘Tests in ‘course.lab...’, or one at a time, by right
clicking on an individual test case class and then continuing as before. The test classes are Espresso test
cases, but be aware that the test cases have been tested only for the standard AVD described below.

As you implement various steps of the Lab, run the test cases every so often to see if you are making
progress toward completion of the Lab.

Warnings:

1. We have done our testing on an emulator using a Pixel 5 emulator with API level 31. To limit
configuration problems, you should test your app against a similar AVD. Also, when testing,
make sure that your device is in Portrait mode with the screen unlocked when the test cases start
running.

2. The ImplicitTest test case requires that you've installed both the Lab2 Intents and the
Lab2 MyDialer applications. Remember - If you change Lab2 MyDialer, you'll need to
reinstall it.

3. Spelling counts. Pay attention to how to specify data values in your xml files. Leave out or
misspell a single letter and Android won't understand what you really meant.

As you implement various steps of the lab, run the test cases every so often to see if you are making
progress toward completion of the lab.

Once you’ve passed all the test cases, follow the following instructions to submit your work via GitLab
for grading.

Submission

To submit your work you will need to commit your solution to your repo on GitLab by running the
following command: git push origin main. Note: you must commit all of your changed files first before
you can push to your remote repo on the gitlab server. Once you have pushed your changes, login to
your repon on gitlab.cs.umd.edu and verify that you see your commit message along with your changes
there.

Challenge Activities

Exploring Different Intents
Problem Description:

In today’s Intents Lab you used an Intent to dial a phone number. However, as you’ve seen in the lec-
tures, Intents can be used to perform many other actions like opening the camera, launch a web browser
or creating a new email.

Your goal in this challenge problem is to familiarize yourself with some other common Intents and add
3 buttons in your app’s main activity which use Intents to do the following:

1. Open the calendar to create a new calendar event.
2. Open the map to show a specific location.
3. Compose an email.

Note: Each of the these can be implemented using the Intents documented at this link:
https://developer.android.com/guide/components/intents-common.html. We’ve chosen these Intents
because they’re available on your emulator (the Pixel 5 API 31). If you’re not using this emulator and
are receiving errors, it is most likely an issue with the device type or API version.

Once you have the buttons working, think about what the code of the receiving application might look
like. What intent filters might they need to receive these intents?

https://developer.android.com/guide/components/intents-common.html

Firing Intents with ADB
Problem Description:

The Android SDK comes with a command line tool called the Android Debug Bridge (adb). adb allows
you to interact with your emulator or device via the command line.

To see for yourself, start your emulator and go to the Terminal. You can access the Terminal from in-
side Android Studio by going to View > Tool Windows > Terminal.

=
O = ODxnle QN

Once your emulator has finished booting, send the command ‘adb shell Is /sdcard/* from the terminal.
Most likely, you will need to add the full path to adb when calling that command. If you are unsure
where it is installed, you can find this from within Android Studio by going to File > Project Structure
and finding your Android SDK location (screenshot below). adb is located at

<path to_android sdk>/platform-tools. In this case, I would use
‘C:\Users\CMSC436\AppData\Local\Android\Sdk\platform-tools\adb’.

& Project Structure

—

g projects that do not have a

SDK Location

3d Android NDK.

JDK locati
The € to use when building

With this adb command, you’ve just instructed the emulator to run a shell command, ‘Is /sdcard/’. If
all goes smoothly, you should see something similar to the output below. This is the output from the
‘Is’ command and are the files and directories on your emulator’s /sdcard.

adb has many features, but for today we will only focus on using it to fire Intents via the command line.
This feature can be helpful to quickly verify that your app’s Activity is responding correctly to Intents.

In general, we can fire an Intent via adb with the following command:

adb shell am start -a <ACTION> -c <CATEGORY> -t <MIME TYPE> -d <DATA>
-¢ <EXTRA NAME> <EXTRA VALUE> -n <ACTIVITY>

Most of these options should look familiar to you, and their values can be found in an app’s An-
droidManifest file. For example, suppose we want to open a map to a specific location using the Map-
sActivity in the com.google.android.apps.maps package. The map’s AndroidManifest.xml file might
look something like the below:

<manifest package="“com.google.android.apps.maps” />

<activity android:name="“com.google.android.maps.MapsActivity”>
<intent-filter>
<action android:name="‘android.intent.action. VIEW”/>
<category android:name="“android.intent.category. DEFAULT"/>
<data android:scheme="geo” />
</intent-filter>
</activity>

</manifest>

Using the information in this file and providing the coordinates we’d like the map to open to, we can
construct the following command to launch the Activity via an Intent:

adb shell am start -a android.intent.action.VIEW -d geo:38.98,-76.9 -n
com.google.android.apps.maps/com.google.android.maps.MapsActivity

Note: If you are using a Pixel 5 API 31 emulator, go ahead and try this command. It should open An-
droid’s default maps app centered at the coordinates you’ve given it.

Your goal in this challenge problem is to use adb to open the MyDialerActivity in the MyDialer app
you coded in the lab.

Hint: Use information in your MyDialer’s AndroidManifest.xml to construct the command.

Note: In order to test this, you’ll want to make sure the MyDialer app is installed on your emulator, but
not currently open.

For more information on using ADB to fire intents:
e Verifying Intents via ADB: https://developer.android.com/guide/components/intents-
common.html#Adblntents

10

https://developer.android.com/guide/components/intents-common.html#AdbIntents
https://developer.android.com/guide/components/intents-common.html#AdbIntents

	Objectives:
	The Intent class
	Implementation Notes:

	Testing
	Submission
	Challenge Activities

