CMSC388A

Web Application Development with JavaScript

\XERS’T}»

& \o

Q

Y- Maps, Form Validation, Classes

4RYLNé

Department of Computer Science
University of MD, College Park

Slides material developed by lichul Yoon, Nelson Padua-Perez

NNNNNNNNNNN



Maps

e Collection of key - value pairs

e Keys and values can be primitive or references

e Can define a map via iterable over key-value pairs

e keys() - method returns iterable for keys in the map

e values() - method returns iterable for values in the map
e entries() - method returns iterable over (key, value) pairs
e Example: Map.html

INTERNAL USE



WeakMaps

e A collection of key-value pairs

— In which primitive data types are not allowed as keys
e The keys must be objects
e The values can be arbitrary values

o Key is weakly held; if the object representing a key is the only
reference to the object, the object will be garbage-collected

e You cannot iterate over keys, values, or entries
e You need a key to get some content out of the map
e Example: WeakMap.html

— As defined, the example relies on a Map

— Run the example in Chrome, select Inspect, and under the Memory
option, select "Heap Snapshot”, and select the "Take snapshot”
button at the end

— Search for " TerpObject" in the Constructor column
— Repeat the above process, but using a WeakMap rather than a map
e Uses - to define private data in a “class”

INTERNAL USE



Immediately Invoked Function Expression (IIFE)

e |IFE - approach to define a function so it gets invoked immediately
— It does not have a name, and it is self-executing
e Two parts

— Anonymous function with lexical scope enclosed within the
grouping operator ()

e |IFE - Prevents accessing variables within the IIFE idiom as well as
polluting the global scope

e Emulates block-scoped variables
e Not needed if “let” is used instead of “var”
e Example: IIFE.html

INTERNAL USE



Form Validation

e Form data validation

— We can validate the data associated with a form by recognizing
the submit event

— window.onsubmit = validateData;
» validateData is a function that will check for data validity
» It will return true or false

e Keep in mind that JavaScript can be disabled therefore, the server
application must also validate the data

e Notice the organization code (HTML, CSS, JS separate) in the example
e Example: FormValidation

INTERNAL USE



Class Declaration

e Basic syntax
class MyClass {
constructor(args) { ... }
method1() { ... } /* methods are non-enumerable */
method2() { ... }
}
e Usage
let c = new MyClass(args);
c.method1();
new MyClass() to create a new object

e constructor method is automatically called by new
— Used to create and initialize a new object

— Only one constructor is allowed

INTERNAL USE



Static Properties and Methods

e Private variables - defined using #
e Static properties

— Belongs to the class itself

— Add static in front of the variable’s name
e Static methods

— Assign a method to the class itself

— Add static in front of the method’s name
e Example: ClassDeclaration.html
e The class's body is in strict mode

e Class declarations and class expressions are in strict mode

INTERNAL USE




Class Declarations are NOT Hoisted

e function declarations are hoisted
e class declarations are NOT hoisted
— Declare your class first and then access it
— Otherwise, code like the following will throw a ReferenceError

const p = new Rectangle(); // ReferenceError

class Rectangle {}

INTERNAL USE



Getters and Setters

e Getters/setters can be used as wrappers over “real” property values

— get - binds an object property to a function that will be called
when that property is looked up

— set - binds an object property to a function to be called when
there is an attempt to set that property

e getPropName and setPropName vs. getter/setter syntax
— Your preference

e Example: Car.html

INTERNAL USE



Class Inheritance

e “extends” keyword used to define inheritance relationship
e Syntax

class X extends Y { ... }

e Example: SportsCar.html

INTERNAL USE

10



Method Overriding

e Overriding constructor

— constructors in a child class must call super(...) before
using this in order to override constructor

— super(...) is only allowed in the constructor
— If not overridden, the following will be created for you
constructor(...args) {
super(...args);
}
e Overriding non-constructor methods

— Simply define a method with the same name in a child class. It
will shadow the parent’s method

— super.method(...) to call a parent method

INTERNAL USE

11



References

e https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

INTERNAL USE

12


https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

