
1INTERNAL USE

CMSC388A

Web Application Development with JavaScript

Maps, Form Validation, Classes
Department of Computer Science

University of MD, College Park

Slides material developed by Ilchul Yoon, Nelson Padua-Perez

2INTERNAL USE

Maps

• Collection of key - value pairs
• Keys and values can be primitive or references
• Can define a map via iterable over key-value pairs
• keys() - method returns iterable for keys in the map
• values() - method returns iterable for values in the map
• entries() - method returns iterable over (key, value) pairs
• Example: Map.html

3INTERNAL USE

WeakMaps
• A collection of key-value pairs

– In which primitive data types are not allowed as keys
• The keys must be objects
• The values can be arbitrary values
• Key is weakly held; if the object representing a key is the only

reference to the object, the object will be garbage-collected
• You cannot iterate over keys, values, or entries
• You need a key to get some content out of the map
• Example: WeakMap.html

– As defined, the example relies on a Map
– Run the example in Chrome, select Inspect, and under the Memory

option, select "Heap Snapshot“, and select the "Take snapshot"
button at the end

– Search for " TerpObject" in the Constructor column
– Repeat the above process, but using a WeakMap rather than a map

• Uses - to define private data in a “class”

4INTERNAL USE

Immediately Invoked Function Expression (IIFE)
• IIFE - approach to define a function so it gets invoked immediately

– It does not have a name, and it is self-executing
• Two parts

– Anonymous function with lexical scope enclosed within the
grouping operator ()

• IIFE - Prevents accessing variables within the IIFE idiom as well as
polluting the global scope

• Emulates block-scoped variables
• Not needed if “let” is used instead of “var”
• Example: IIFE.html

5INTERNAL USE

Form Validation

• Form data validation
– We can validate the data associated with a form by recognizing

the submit event
– window.onsubmit = validateData;

» validateData is a function that will check for data validity
» It will return true or false

• Keep in mind that JavaScript can be disabled therefore, the server
application must also validate the data

• Notice the organization code (HTML, CSS, JS separate) in the example
• Example: FormValidation

6INTERNAL USE

Class Declaration
• Basic syntax

class MyClass {
 constructor(args) { ... }
 method1() { ... } /* methods are non-enumerable */
 method2() { ... }
}

• Usage
let c = new MyClass(args);
c.method1();

• new MyClass() to create a new object
• constructor method is automatically called by new

– Used to create and initialize a new object
– Only one constructor is allowed

7INTERNAL USE

Static Properties and Methods
• Private variables - defined using #
• Static properties

– Belongs to the class itself
– Add static in front of the variable’s name

• Static methods
– Assign a method to the class itself
– Add static in front of the method’s name

• Example: ClassDeclaration.html
• The class's body is in strict mode
• Class declarations and class expressions are in strict mode

T
h
e
p
i
c
t
u
r
e
c
a
n
'
t
b
e
d
i
s
p
l
a
y
e
d
.

8INTERNAL USE

Class Declarations are NOT Hoisted
• function declarations are hoisted
• class declarations are NOT hoisted

– Declare your class first and then access it
– Otherwise, code like the following will throw a ReferenceError

const p = new Rectangle(); // ReferenceError
…
class Rectangle {}

9INTERNAL USE

Getters and Setters

• Getters/setters can be used as wrappers over “real” property values
– get - binds an object property to a function that will be called

when that property is looked up
– set - binds an object property to a function to be called when

there is an attempt to set that property
• getPropName and setPropName vs. getter/setter syntax

– Your preference
• Example: Car.html

10INTERNAL USE

Class Inheritance
• “extends” keyword used to define inheritance relationship
• Syntax

class X extends Y { … }
• Example: SportsCar.html

11INTERNAL USE

Method Overriding

• Overriding constructor
– constructors in a child class must call super(...) before

using this in order to override constructor
– super(…) is only allowed in the constructor
– If not overridden, the following will be created for you

constructor(...args) {
 super(...args);
}

• Overriding non-constructor methods
– Simply define a method with the same name in a child class. It

will shadow the parent’s method
– super.method(...) to call a parent method

12INTERNAL USE

References
• https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

