
1INTERNAL USE

CMSC388B

Web Application Development with JavaScript

NodeJS
Department of Computer Science

University of MD, College Park

Slides material developed by Ilchul Yoon, Nelson Padua-Perez

2INTERNAL USE

Node.js

• Node.js
– Asynchronous event driven JavaScript runtime
– Designed for scalable network applications
– Can be used to developed full web applications
– Reference: https://nodejs.org/en/about/

• Relies on JavaScript V8 Engine
– Written in C++
– V8 incorporates just-in-time(JIT) compiler

» Compiles JavaScript to machine code rather than interpreting it
• Why use it? Performance reasons

https://nodejs.org/en/about/

3INTERNAL USE

Installation

• For installation: https://nodejs.org/
• REPL

– Read-Eval-Print-Loop (REPL) is a command-line tool for
processing Node. js expressions

• Using VS Code, open the folder with examples and then a terminal
window

• To start REPL type of the terminal "node“
• Let’s define a variable and printed
 let x = 10;
 console.log(x)
• To exit REPL “.exit”
• For help “.help”
• Node Version is displayed when starting node
• You can write JS in the REPL

https://nodejs.org/

4INTERNAL USE

Important (run npm i in folder with examples)

• We are removing the node_modules folder from the lecture examples
we are posting

– This folder has the “libraries” (modules) the examples rely on
• Before you run any code examples, execute npm i (not npm init)
• npm i (or npm install) will install in the node_modules folder any

necessary modules (based on the file package.json)

5INTERNAL USE

WebServer Example

• Example: webServer.js
– Open a terminal in VS Code so we can run Node
– To run the example

» Type on the command line node webserver.js
» Start live server and use the URL displayed after the server has

been started
– module - is a library
– require statement imports the module
– The http module is one of Node’s core modules
– To stop the program, use CTRL-C on the terminal

6INTERNAL USE

WebServer Example

• About modules
– To add modules, type npm install <module name> at the

command line
– Example: Installing Connect Middleware (CM) module

» C:\tempExample>npm install cm (or npm i cm)
– Files package.json and package-lock.json will be created and

directory node_modules
– package.json - contains metadata about a project, such as a

name, version, and dependencies
– package-lock.json - holds information on the dependencies or

packages installed for a project, including version numbers
» Ensures that each installation results remain identical and

reproducible

7INTERNAL USE

WebServer Example

• When you type the name of a program that Node cannot find, you will
get an error similar to the following (in the example we are trying to
execute webServer.js, but wrote webServe.js)

• It considers the program a module

8INTERNAL USE

Creating a Project in Node

• A Node project has a file called package.json providing information such as
project’s name, author, version, and dependencies (which modules your
project relies on)

• You can create this file yourself, or you can rely on npm init
• Example: Let’s create a project

– Create a folder named example
– In the folder, execute npm init
– Let’s examine the package.json file

9INTERNAL USE

Asynchronous Programming

• fs module - File System module
• Node supports both synchronous and asynchronous versions of most File

System Functions
• Synchronous Programming

– Code that performs one task after another, waiting for one to
complete before starting another

– Example: readFileSync.js
• Asynchronous Programming

– We don’t wait for the code to finish
– Callback will take care of processing once an event has been triggered
– Example: readFileAsync.js

10INTERNAL USE

Global Objects

• global - similar to the browser global object (window)
– Provides access to all globally available Node objects and functions
– Example: In node REPL, execute console.log(global)

• process
– Provides information about the Node environment and the runtime

environment
– Standard input/output occurs through process
– process.stdin - stream for stdin
– process.stdout - stream for stdout
– process.stderr - stream for stderr
– Example: webServerControl.js

11INTERNAL USE

Global Objects

• Example: translator.js
– Translates from English to Spanish
– Relies on command-line arguments
– Using process.stdout.write() as console.log automatically adds a newline
– To run the example

» node translator.js Spanish
• Example: imageServer.js

– URL to try: http://localhost:5000/?imageName=umcp
– URL to try: http://localhost:5000/?imageName=terps

» This one is invalid as there is no terps image

http://localhost:5000/?imageName=umcp
http://localhost:5000/?imageName=terps

12INTERNAL USE

Processing in JavaScript (Event Loop)

Heap Call
Stack

Apis

DOM SetTime
out

JavaScript Runtime
(single thread)

Part of the
thread pool

Task (SetTimeout), Task,
Task

Macrotask Queue

MicroTask (promise), MicroTask

Microtask Queue

Event Loop
(picks tasks
from queues)

fetch

13INTERNAL USE

Event Loop

• JavaScript is single-threaded and has a Call Stack that supports the execution
of code line by line

• Although single-threaded, the JavaScript environment is supported by Web
APIs (e.g., DOM manipulation, setTimeOut, fetch, Geolocation, etc.), each of
which can be visualized as a separate thread

• Web APIs place tasks in two data structures: MacroTask queue and the
Microtask queue

– Example: setTimeOut places tasks in the MacroTask queue and fetch in
the Microtask queue

• Event Loop - Responsible for scheduling/managing tasks in the queues. The
Event Loop decides which one gets executed next in the Call Stack

14INTERNAL USE

Event Loop

• Event Loop
– When a new iteration of the event loop begins, a macrotask is selected

from the Macrotask queue
» Macrotasks added after the iteration begins will not run until the next

iteration
– Each time a macrotask exits and the Call Stack is empty, each microtask in

the Microtask queue will be executed. The execution of microtasks
continues until the queue is empty (even if new ones arrive). That is,
microtasks can enqueue new microtasks, which will be executed before
the next macrotask begins and before the end of the current event loop
iteration

– References:
» Web Stories (https://www.youtube.com/@web_stories) ‘s video:

https://www.youtube.com/watch?v=3Jma9VYvSz8
» https://developer.mozilla.org/en-

US/docs/Web/API/HTML_DOM_API/Microtask_guide/In_depth

https://www.youtube.com/@web_stories
https://www.youtube.com/watch?v=3Jma9VYvSz8
https://developer.mozilla.org/en-US/docs/Web/API/HTML_DOM_API/Microtask_guide/In_depth
https://developer.mozilla.org/en-US/docs/Web/API/HTML_DOM_API/Microtask_guide/In_depth

15INTERNAL USE

Event Loop

• Event Loop Video: https://www.youtube.com/watch?v=8aGhZQkoFbQ
 by Philip Roberts (starting at timestamp 2:14)
• Animation Tool: https://goo.gl/iJRGvT

https://www.youtube.com/watch?v=8aGhZQkoFbQ
https://goo.gl/iJRGvT

16INTERNAL USE

About setTimeout

• When setTimeout is called with a value of 0, it does not mean the code
will be executed immediately. It means the API will place the callback
immediately in the Macrotask queue

17INTERNAL USE

Events

• For timers
– setTimeout() - executes callback after delay time (milliseconds)
– setInterval() - callback is executed at periodic intervals
– clearInterval() - clears timer
– Example: timer.js

18INTERNAL USE

References

• Learning Node, 2nd Edition
– By: Shelley Powers
– SBN-13: 978-1-4919-4312-0

