
1INTERNAL USE

CMSC388B

Web Application Development with JavaScript

Router, Cookies, Sessions
Department of Computer Science

University of MD, College Park

Slides material developed by Ilchul Yoon, Nelson Padua-Perez

2INTERNAL USE

REST (Representational State Transfer)
• An architectural style (not a protocol)

– Designed to operate with resource-oriented services
(locate/manipulate resources)

– Allows different data formats (e.g., HTML, text, JSON)
– Advantages: Fast, language, and platform-independent

• URLs represent resources
– Resource - document, person, location
– Each resource has a unique URI
– Each resource can be dynamically generated instead of having an

actual page/document
• Operations are performed via HTTP methods (GET, POST, PUT, DELETE)

with resources
• Video: https://www.youtube.com/watch?v=-MTSQjw5DrM&t=173s

– Up to time marker 2:29
• Alternative: GraphQL

– Video: https://www.youtube.com/watch?v=eIQh02xuVw4

https://www.youtube.com/watch?v=-MTSQjw5DrM&t=173s
https://www.youtube.com/watch?v=eIQh02xuVw4

3INTERNAL USE

Router
• To manage the complexity of many routes in your main app, you can define files

that take care of some of them. In the file you create, a router will take care of
some of those routes

• The Router object (that can handle .get, .post, etc.) is created using
express.Router()

• Here is an example of a router for requests that start with /building

/* Code in file building.js */
const express = require('express');
const router = express.Router();
router.get("/", (request, response) => { response.send("/ in building.js") });
router.get("/iribe", (request, response) => { response.send("/iribe in building.js")
});
• For the above code in the main app, we have
 app.use("/buildings", buildings);
• Example: Router

4INTERNAL USE

Cookies
• Cookie - a small piece of information sent by a server and stored either in the

browser’s memory or as a small file on the hard drive. Acceptance of the cookie
depends on the client

• Browser sends the cookie back with every request to the server that sent the
cookie

• Cookie - contains a name/value pair. This is how the cookie information may look
like when sent by the server in the HTTP header

Set-Cookie: automobile=nelyota; path=/; domain=notRealCars.com
• Setting a cookie - associating a value with a name
• Getting a cookie - getting the value associated with a name
• Cookie size - 4KB per cookie

5INTERNAL USE

Cookies with an Expiration Date

• Cookies without an expiration date will expire when the browser is closed
• You can see cookies in Chrome by right-clicking on the page and selecting

“Application” and under “Storage” expanding “Cookies”
• In Node, we need the cookie-parser module

• We use response.cookie to set a cookie
• We use response.cookies to access cookies

• Example: Cookies (in Node)
• Type: http://localhost:3000/
• Type: http://localhost:3000/setMascotCookie
• Type: http://localhost:3000/check

http://localhost:3000/
http://localhost:3000/setMascotCookie
http://localhost:3000/check

6INTERNAL USE

Sessions

• Session - time period during which a person views several different web pages
in a browser and then quits

• What would you like
– To keep track of information throughout the session. For example, keeping

track of color preferences, usernames, data selection, etc.
• What is the problem?

– HTTP (the protocol that makes possible the communication between
browsers and web servers) is stateless

– Stateless - every page request is independent
• Solution - Sessions
• In Node, we can use the express-session module to have session support

– request.session used to store variables
» E.g., request.session.name = “Mary”;

– Use request.session.save() to save session variables
– Use request.session.destroy() to destroy a session
– Sessions rely on cookies

7INTERNAL USE

Sessions

• Example: Sessions/app.js
– Using Insomnia

» Send a POST request http://localhost:3000/login
• You will get an “Invalid user” message

» Using Insomnia, send a POST request to http://localhost:3000/login using
“Form”à“Form URL Encoded” and the parameters user and password. The
values will be peter and terps, respectively

• You will get a “User has logged in” message
» Send a GET request http://localhost:3000/browse

• You will get a “Welcome back peter, browse” message

http://localhost:3000/login
http://localhost:3000/login
http://localhost:3000/browse

8INTERNAL USE

Sessions

• Example: Sessions/app.js
– Using Insomnia

» Send a POST request http://localhost:3000/buy using “Form”à“Form URL Encoded”
and the parameter item with the value tv

• You will get an “tv added to your cart” message
» Send a POST request http://localhost:3000/checkout

• You will get an “Items you are buying are tv” message
» Send a POST request http://localhost:3000/logout
» You will get a “You have logged out” message
» Try to add buy another article after logging out

– Let’s see the cookie with session information
– Using Postman and Insomnia so we can have two clients at the same time

» We can have two clients each with different carts
• In insomnia create a new collection in order to have a new client

» To issue localhost request in Postman you may need to download the Postman
client. T

» To issue an HTTP request in Postman, select “HOME” and under “Start with
something new” select “Create New->” and select “HTTP Request”

http://localhost:3000/buy
http://localhost:3000/checkout
http://localhost:3000/logout

9INTERNAL USE

Express Application Generator
• Link: https://expressjs.com/en/starter/generator.html

https://expressjs.com/en/starter/generator.html

