CMSC388B

Web Application Development with JavaScript

\IEP‘SITJ»
>, O,

.

4RYLNé

Q%

Router, Cookies, Sessions

Department of Computer Science

University of MD, College Park

Slides material developed by lichul Yoon, Nelson Padua-Perez

NNNNNNNNNNN



REST (Representational State Transfer)

An architectural style (not a protocol)

— Designed to operate with resource-oriented services
(locate/manipulate resources)

— Allows different data formats (e.g., HTML, text, JSON)
— Advantages: Fast, language, and platform-independent

URLs represent resources
— Resource - document, person, location
— Each resource has a unique URI

— Each resource can be dynamically generated instead of having an
actual page/document

e OQOperations are performed via HTTP methods (GET, POST, PUT, DELETE)
with resources

e Video: https://www.youtube.com/watch?v=-MTSQjw5DrM&t=173s
— Up to time marker 2:29

e Alternative: GraphQL
— Video: https://www.youtube.com/watch?v=elQh02xuVw4

INTERNAL USE


https://www.youtube.com/watch?v=-MTSQjw5DrM&t=173s
https://www.youtube.com/watch?v=eIQh02xuVw4

Router

e To manage the complexity of many routes in your main app, you can define files
that take care of some of them. In the file you create, a router will take care of
some of those routes

e The Router object (that can handle .get, .post, etc.) is created using
express.Router()

e Here is an example of a router for requests that start with /building

/* Code in file building.js */
const express = require('express');
const router = express.Router();
router.get("/", (request, response) => { response.send("/ in building.js") });
router.get("/iribe", (request, response) => { response.send("/iribe in building.js")
hE
e For the above code in the main app, we have
app.use("/buildings", buildings);
e Example: Router

INTERNAL USE



Cookies

* Cookie - a small piece of information sent by a server and stored either in the

browser’s memory or as a small file on the hard drive. Acceptance of the cookie
depends on the client

* Browser sends the cookie back with every request to the server that sent the
cookie

* Cookie - contains a name/value pair. This is how the cookie information may look
like when sent by the server in the HTTP header

Set-Cookie: automobile=nelyota; path=/; domain=notRealCars.com
» Setting a cookie - associating a value with a name
* Getting a cookie - getting the value associated with a name
e Cookie size - 4KB per cookie

INTERNAL USE



Cookies with an Expiration Date

* Cookies without an expiration date will expire when the browser is closed

* You can see cookies in Chrome by right-clicking on the page and selecting
“Application” and under “Storage” expanding “Cookies”

* In Node, we need the cookie-parser module
 We use response.cookie to set a cookie
* We use response.cookies to access cookies
 Example: Cookies (in Node)
e Type: http://localhost:3000/
e Type: http://localhost:3000/setMascotCookie
* Type: http://localhost:3000/check

INTERNAL USE


http://localhost:3000/
http://localhost:3000/setMascotCookie
http://localhost:3000/check

Sessions

e Session - time period during which a person views several different web pages
in a browser and then quits

e What would you like

— To keep track of information throughout the session. For example, keeping
track of color preferences, usernames, data selection, etc.

e What is the problem?

— HTTP (the protocol that makes possible the communication between
browsers and web servers) is stateless

— Stateless - every page request is independent
e Solution - Sessions
* In Node, we can use the express-session module to have session support
— request.session used to store variables
» E.g., request.session.name = “Mary”;
— Use request.session.save() to save session variables
— Use request.session.destroy() to destroy a session

— Sessions rely on cookies

INTERNAL USE



Sessions

e Example: Sessions/app.js
— Using Insomnia
» Send a POST request http://localhost:3000/login

e You will get an “Invalid user” message

» Using Insomnia, send a POST request to http://localhost:3000/login using
“Form”—>“Form URL Encoded” and the parameters user and password. The
values will be peter and terps, respectively

e You will get a “User has logged in” message
» Send a GET request http://localhost:3000/browse
e You will get a “Welcome back peter, browse” message

INTERNAL USE


http://localhost:3000/login
http://localhost:3000/login
http://localhost:3000/browse

Sessions

e Example: Sessions/app.js

— Using Insomnia

»

»

»

»

»

Send a POST request http://localhost:3000/buy using “Form” = “Form URL Encoded”
and the parameter item with the value tv

e You will get an “tv added to your cart” message
Send a POST request http://localhost:3000/checkout

e You will get an “Items you are buying are tv” message
Send a POST request http://localhost:3000/logout

You will get a “You have logged out” message

Try to add buy another article after logging out

— Let’s see the cookie with session information

— Using Postman and Insomnia so we can have two clients at the same time

»

»

»

We can have two clients each with different carts
¢ In insomnia create a new collection in order to have a new client

To issue localhost request in Postman you may need to download the Postman
client. T

To issue an HTTP request in Postman, select “HOME” and under “Start with
something new” select “Create New->" and select “HTTP Request”

INTERNAL USE


http://localhost:3000/buy
http://localhost:3000/checkout
http://localhost:3000/logout

Express Application Generator

e Link: https://expressjs.com/en/starter/generator.html

INTERNAL USE


https://expressjs.com/en/starter/generator.html

