
1INTERNAL USE

CMSC388B

Web Application Development with JavaScript

Modules
Department of Computer Science

University of MD, College Park

Slides material developed by Ilchul Yoon, Nelson Padua-Perez

2INTERNAL USE

<script> defer attribute
• defer attribute
• For external scripts
• Does not block the page loading

– Tells the browser to continue with the page and loads the script “in
background”, then runs the script when it loads

• <script defer src=“….”></script>

3INTERNAL USE

Modules
• Split features into multiple files (modules)
• A module usually contains a class or a library of functions
• A module is just a file. One script is one module
• Two types of JS module systems

– CommonJS: implemented by Node.js
» “require()”

– ECMAScript Harmony (ES6): Used for both server/client
» “import”

4INTERNAL USE

CommonJS Modules

• Define functions, classes, and constants in a .js file, .cjs file
• Use module.exports = { } to export entities

– Example: module.exports = { DEFAULT, add, multiply };
• Use require in the file you would like to use the module

– Example: const utils = require("./utils")
» Assuming the file ./util.js has DEFAULT constant and two

functions: add and multiply
• Example: CommonJSModules

– driver1.js, driver2.js, driver3.js

5INTERNAL USE

ES6 Modules
• Define functions, classes, and constants in a .js, .mjs file
• Use exports = { } to export entities

– Example: exports = { DEFAULT, add, multiply };
• Use import in the file you would like to use the module

– Example: import * as utils from "./utils.mjs";
» Assuming the file util.mjs has DEFAULT constant and two functions:

add and multiply
• Example: ES6Modules

– NodeExamples folder (to run these examples, package.json must have
the entry "type":"module"). Try removing it

» driver1ES6.js, driver2ES6.js, driver3ES6.js
– BrowserExample folder

» You need to run this example using a web server
• Place files in htdocs or use VS Code Live Server
• Try opening the file without a server; check the console

6INTERNAL USE

Extensions (.js, .mjs, .cjs)
• .mjs - extension for ES6 modules for use with a Node.js application

– .mjs files are written in JavaScript and may use the .js extension outside of the
Node.js context

• How Node.js will treat files:
– .cjs files as CommonJS modules
– .mjs files are ES6 modules
– .js files based on the default module system. CommonJS is the default for

Node.js unless package.json has the following directive:
» "type": "module"
» Try running examples after removing from package.json "type": "module“

• If you rename the file with a .mjs extension it will work (without
"type": "module“)

7INTERNAL USE

Modules in Browsers
• If a file is used in a browser, you must tell the browser that a script

should be treated as module, by using the attribute
 <script type="module">
• Module scripts are always deferred

– same effect as defer attribute

