CMSC388B

Web Application Development with JavaScript

QERSIT},
=, O,

.

4RYLN9

O%

JavaScript Intro

Department of Computer Science
University of MD, College Park

Slides material developed by lichul Yoon, Nelson Padua-Perez

NNNNNNNNNNN



JavaScript

e Alightweight, interpreted, or just-in-time compiled language that can
function as both a procedural and an object-oriented language

e Appears in a web browser and non-browser environments (e.g., Node.js,
Apache CouchDB)

e |tallows us to:
— To create interactive web pages
— To control a browser application
» Open and create new browser windows
» Download and display the contents of any URL
— To interact with the user
— Ability to interact with HTML forms
— Access data from databases and other online resources
e Example: SgrTable.html

INTERNAL USE



ECMAScript

e Ecma International - Organization that creates standards

— https://www.ecma-international.org/

e Scripting language - language that acts on a system or an entity
e ECMAScript - specification for a general-purpose scripting language

— Provides rules that a scripting language must observe to be
considered ECMAScript compliant

e ECMAScript specification

— https://www.ecma-international.org/publications-and-standards/standards/ecma-262/

INTERNAL USE


https://www.ecma-international.org/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/

JavaScript

e Javascript - a general-purpose scripting language that conforms to the
ECMAScript specification

e JavaScript is based on the ECMAScript specification
e Reference: https://developer.mozilla.org/en-US/docs/Web/JavaScript

INTERNAL USE


https://developer.mozilla.org/en-US/docs/Web/JavaScript

JavaScript Engine

e JavaScript engines process JavaScript code
— Safari - JavaScriptCore
— Chrome - V8
— Firefox - Spidermonkey
— Edge - Chakra

Client-Side JavaScript: the result of embedding a JavaScript engine
in a web browser

e A JavaScript program can appear:
— In a file by itself, typically named with the extension .js
— In HTML files between a <script> and </script> tags
e Example: TemplatelS.html
— Right-click—>Inspect—> Console to see console.log() output

INTERNAL USE



“use strict” in the template JS

e JavaScript's strict mode, introduced in ES5

e A way to opt-in to a restricted variant of JavaScript, thereby
implicitly opting out of "sloppy mode"

e Several changes to normal JavaScript semantics:
— Makes JavaScript silent errors throw errors

— Prohibits some syntax likely to be defined in future versions of
ECMAScript

e Examples (not allowed with strict mode):
— Declaring a function in a block
» if (a < b) { function f() {} }

— Setting a value to an undeclared variable

INTERNAL USE



Processing HTML Page with JS

DOM - Document Object Model
— Structured representation of the HTML page
— Every HTML element is represented as a node

— Browser uses HTML to build the DOM and can fix problems with the HTML,
so a valid DOM is generated

e Lifecycle
— Set the user interface
» Parse the HTML and build the DOM
» Process (execute) JavaScript code
— Enter a loop and wait for events to take place

e When JavaScript is seen on a page, the DOM construction is halted, and
JavaScript code execution is started

e JS can modify the DOM (e.g., creating and modifying nodes)
— One reason why <script></script> elements appear at the bottom of a page

INTERNAL USE 7



Event-Handling

e Relies on a single-threaded execution model

* An event queue keeps track of events that have taken place but have
not been processed (the event-handler function for the event has not
been called)

e All generated events (whether user-generated or not) are placed in
the event queue in the order they were detected by the browser

— The browser mechanism that detects events and adds them to
the event queue is separate from the thread that is handling the
events

e JavaScript periodically checks the event queue, and if any event is
found, it executes the appropriate handler (if one was defined)

INTERNAL USE



Browser’s Global Objects

e Browsers provide two global objects: window and document

e window object - represents the window in which a page resides
— Provides access to other global objects (e.g., document)
— Keeps track of the user’s global variables
— Allows JavaScript to access Browser’s APls

e document object

— Property of the window object that represents the DOM of the
current page

— Via this object, you can access & modify the DOM

INTERNAL USE



Types of JavaScript Code

e Function Code
— Code contained in a function
e Global Code
— Code placed outside all functions
— Automatically executed by JS engine

e AsinJava, a stack keeps track of function calls. Each function call
generates a function execution context (stack frame)

e There is one frame called the global execution context created
when the JS program starts executing

— Only one global execution context (at the bottom of the stack)

INTERNAL USE

10



JavaScript Comments

e Comments in JavaScript
— Used to provide information to the programmer
— Used to identify sections in your code
— lgnored by the JavaScript interpreter

e Two types of comments
— Inline comment // This is a comment until the end of the line
— Block comment
/* The following is a
comment that spans

several lines */

INTERNAL USE

11



Variable Declarations

e Variable declaration (no type specification)

var x; /* old (avoid)*/
let x; /* for variables*/

const x; /* for constants*/

e Variables names must start with:
— A letter, underscore, or dollar sign and then

— Can be followed by any number of letters, underscores, dollar
signs, or digits

INTERNAL USE

12



JavaScript Data Types

e JavaScript has no class concept
— We have functions (which are objects)

— Using functions and prototypal inheritance, we can implement
the concept of classes

— Syntax was added to define classes as you do in Java, but it is
just syntactic sugar (no actual classes as in Java)

e Two kinds of types

— Primitive types - data that is not an object and has no methods.
All primitives are immutable

— Reference types - references to objects

INTERNAL USE

13



JavaScript Data Types

e Seven (7) primitive data types in JavaScript

null - has the value null
boolean - has the value true or false

number - numeric data type using a double-precision 64-bit floating point
form (IEEE 754)

string - character sequence delimited by single, double quotes, or

undefined - value automatically assigned to a variable just declared or to
parameters that have no corresponding arguments

bigint - represents integers in arbitrary precision format (precision limited
by the host system)

symbol - represents a unique identifier (guaranteed to be unique)
» let x = Symbol("A"); let y = Symbol("A"); // x ===y is false

e typeof operator

Returns string indicating the type of data
Note: typeof "house" will return string

14

INTERNAL USE



JavaScript Data Types

e Reference types represent addresses of objects
e Object - a collection of properties
— Property - a string that is associated with a value
— Value - could be a primitive or reference to an object
e Object creation
let a = new Object(); // first approach

let b = {}; // second approach
let c = { // third approach
id: 789,

name: "Rose Smith"
5
e You could add properties: a.name = “Rose”;
e JavaScript relies on garbage collection
— When an object is no longer needed, set the variable to null

INTERNAL USE

15



