
1INTERNAL USE

CMSC388B

Web Application Development with JavaScript

JS Objects, Fetch
Department of Computer Science

University of MD, College Park

Slides material developed by Ilchul Yoon, Nelson Padua-Perez

2INTERNAL USE

Objects

• Object - Collection of properties
• Property - association between a name and a value

– A property can be seen as a variable associated with a value (dot-syntax)
» obj.propertyName = "Mary";

– A property can be accessed using square brackets (key-value syntax)
» obj["propertyName"] = "Mary";

– When the value is a function, the property is referred to as a
method

– In the key-value syntax approach the string we place in [] can be
any valid JavaScript string or anything that can be converted to a
String (that includes an empty string)

» Any invalid property name can only be accessed using square
bracket notation

– A property that does not exist has a value of undefined

3INTERNAL USE

How to Create Objects
• Using Object constructor (e.g., new Object())

– Object constructor creates an object wrapper for the given value
» Example: let x = new Object(true);

– If the provided value is null or undefined an empty object will be
created

• Using object initializer/literal notation
– An initializer is a list of zero or more property names/values in { }
– Example: let x = {};, y = { radius: 20 };

• Using Object.create()
– Creates a new object, using an existing object as the prototype of

the newly created object
• Example: Objects.html
• Using the [] operator can provide an excellent alternative to add

properties to an object dynamically (when the program is executing)
• Example: AddingProperties.html

4INTERNAL USE

Destructuring Assignment

• Destructuring
– A destructuring assignment allows us to unpack values from

arrays, or properties from objects, into distinct variables
• Example: Destructuring.html

5INTERNAL USE

JSON
• JSON - JavaScriptObjectNotation
• Text data format used to store and send/receive data
• Example:
 {"firstName":"Mary", "lastName":"Smith", "age" : 30}
• Popular format used by APIs to return results
• JSON syntax is derived from JavaScript, but code for generating and reading

JSON can be done in any language

• JSON objects are written using { }
• JSON data is written as name/value pairs where the name must be in quotes

(that is not the case for JavaScript objects). The value can be a string,
number, boolean, array, object, etc.

• Arrays are written using square brackets ([])
• Reference: https://www.w3schools.com/whatis/whatis_json.asp
• Example: JSONExample.html
• See JSON resources (e.g., formatters) at

– https://www.cs.umd.edu/~nelson/classes/resources/web/

https://www.w3schools.com/whatis/whatis_json.asp
https://www.cs.umd.edu/~nelson/classes/resources/web/

6INTERNAL USE

Promises

• Promise - an object that represents the eventual completion (or
failure) of an asynchronous operation

– We attach callbacks to the promise object
– Allows promise chaining

» Execution of two or more asynchronous operations back to
back where results of one step are used by the next

• First, we will explore how to use promises by using the Fetch API
• Later, we will see how we can define our own promises
• Reference

– https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises

7INTERNAL USE

Fetch API
• Provides an interface for fetching resources (including across the network)

– Takes one argument: the path to the resource
– Returns a promise that resolves the response to that request, whether it is

successful or not
• By default (by just providing a URL), we are generating a GET request

– A second options parameter allows you to issue a POST request
• URL has to be an absolute URL
• Response object has methods/information such as:

– json() - parses the body of the response into a JSON object and generates an
error if the parsing fails

– text() - returns the body of the response as text
– status and statusText - information about HTTP status code
– ok - true if the status is a 2xx status code
– Headers
– Reference:
– https://stackabuse.com/making-http-requests-in-node-js-with-node-fetch/

https://stackabuse.com/making-http-requests-in-node-js-with-node-fetch/

8INTERNAL USE

Fetch API
• Example where we display json
 fetch(url)
 .then(response => response.json())
 .then(json => console.log(json));
• Example: PromisesFetch[1-5].html

9INTERNAL USE

async/await
• Standardized in ES8
• async and await sequentialiazes asynchronous code
• Makes the use of promises more comfortable (easy to write and read) – (e.g., can

avoid using .then() chain)
• async - put before a function

– Means that a function returns a promise
– Returned values are wrapped in a resolved promise

• await - put before using a returned promise
– Makes JavaScript wait until that promise is resolved or rejected
– Can’t use await in regular functions (Syntax error)

» SyntaxError: await is only valid in async function
– We use await to retrieve the result associated with a promise

• Example: asyncAwait.html

10INTERNAL USE

Additional Fetch Examples
• Example: FetchingImage.html
• Example: DisplayingCats.html
• Cross-Origin Resource Sharing (CORS)

– Example: Cors.html (illustrates the problem)
– Origin: defined by the protocol, hostname(domain), and port of the URL

» Two objects have the same origin when the protocol, hostname, and
port are the same

» Some operations are restricted to the same origin, and this restriction
can be lifted by using CORS

– CORS (Definition) - HTTP-header based mechanism that allows a server to
specify origins that can access resources (e.g., JSON files) it has

– Browsers (by default) restrict cross-origin HTTP requests initiated by scripts.
For example, fetch() follows the same-origin policy

– Example: http://www.cs.umd.edu/~nelson/classes/resources/cors/
– References: https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS,

https://developer.mozilla.org/en-US/docs/Glossary/Origin

http://www.cs.umd.edu/~nelson/classes/resources/cors/
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Glossary/Origin

