CMSC388B

Web Application Development with JavaScript

qEP\SIT},
>, O,

.

4RYLNé

5\

Modules

Department of Computer Science

University of MD, College Park

Slides material developed by lichul Yoon, Nelson Padua-Perez

NNNNNNNNNNN

<script> defer attribute

defer attribute
For external scripts

Does not block the page loading

— Tells the browser to continue with the page and loads the script “in
background”, then runs the script when it loads

<script defer src="...."></script>

INTERNAL USE

Modules

e Split features into multiple files (modules)
e A module usually contains a class or a library of functions
e A module is just a file. One script is one module
e Two types of JS module systems
— CommonlS: implemented by Node.js
» “require()”
— ECMAScript Harmony (ES6): Used for both server/client

» “import”

INTERNAL USE

CommonlJS Modules

Define functions, classes, and constants in a .js file, .cjs file
Use module.exports = { } to export entities

— Example: module.exports = { DEFAULT, add, multiply };
Use require in the file you would like to use the module

— Example: const utils = require("./utils")

» Assuming the file ./util.js has DEFAULT constant and two
functions: add and multiply

Example: CommonJSModules

— driverl.js, driver2.js, driver3.js

INTERNAL USE

ES6 Modules

e Define functions, classes, and constants in a .js, .mjs file
e Use exports ={ } to export entities
— Example: exports = { DEFAULT, add, multiply };
e Use import in the file you would like to use the module
— Example: import * as utils from "./utils.mjs";

» Assuming the file util.mjs has DEFAULT constant and two functions:
add and multiply

e Example: ES6Modules
— NodeExamples folder (to run these examples, package.json must have

the entry "type":"module"). Try removing it
» driverlES6.js, driver2ES6.js, driver3ES6.js
— BrowserExample folder
» You need to run this example using a web server
e Place files in htdocs or use VS Code Live Server
e Try opening the file without a server; check the console

INTERNAL USE

Extensions (.js, .mjs, .cjs)

e .mjs - extension for ES6 modules for use with a Node.js application

— .mjs files are written in JavaScript and may use the .js extension outside of the
Node.js context

e How Node.js will treat files:
— .¢js files as CommonlJS modules
— .myjs files are ES6 modules

— .js files based on the default module system. CommonlS is the default for
Node.js unless package.json has the following directive:

» "type": "module”

» Try running examples after removing from package.json "type": "module”
e |[f you rename the file with a .mjs extension it will work (without

"type": "module”)

INTERNAL USE

Modules in Browsers

e |f afileis usedin a browser, you must tell the browser that a script
should be treated as module, by using the attribute

<script type="module">
e Module scripts are always deferred

— same effect as defer attribute

INTERNAL USE

