
1INTERNAL USE

CMSC388B

Web Application Development with JavaScript

Express
Department of Computer Science

University of MD, College Park

Slides material developed by Ilchul Yoon, Nelson Padua-Perez

2INTERNAL USE

Important (run npm i in folder with examples)

• We are removing the node_modules folder from the lecture examples
we are posting

• Before you run any code examples, execute npm i (not npm init)
• npm i (or npm install) will install in the node_modules folder any

necessary modules (based on the file package.json)

3INTERNAL USE

Express

• Express is an abstraction layer on top of Node’s http-server
• Express simplifies the implementation of tasks that otherwise will require significant

effort using the http module
• What Express provides:

– Extensions - The basic request and response objects have additional functionality
– Middleware

» Functions Express executes in the middle after the incoming request and
before the output

» Might make changes to the request and response objects
» The use() function is used to register middleware

– Routing - Routing allows us to associate a URL and an HTTP method with some
functionality

– Views - Dynamic generation of HTML

4INTERNAL USE

Installing Express Module

• Let’s install Express and save it as a dependency to package.json by
executing the following command in the previous folder (example) we
created

– npm install express --save
» Note: As of Node 5.0.0 installed modules are added as a

dependency by default, and you don’t need the --save
• After installing, you will see a directory called node_modules (let’s take a

look)

5INTERNAL USE

Express Example

• Example: expressExample.js
– To run, execute node expressExample.js
– You can run node examples without the .js extension

» node expressExample
– In the browser, type the URL you see in the node console

6INTERNAL USE

Middleware

• Middleware is a function
• In Node, a single function processes the request; using middleware, the

request can be processed by several functions
• For example:

– One function can do authentication
– One function can do logging

• Every middleware function does not need to process a request (any of them
could provide a response). If none provides a response, the server will hang

• A middleware function can modify the request or response objects
• In app = express(), app is a function that goes through the set of functions that

are part of the middleware stack
• app.use allows us to add middleware functions to the middleware stack
• Example: middleware.js

– To run, execute node middleware.js
– In the browser, type the URL you see in the Node console

7INTERNAL USE

Logger example

• We can log requests using a third-party logger
• Installing morgan

– npm install morgan
• writeHead is used with text/html
• Example: loggingHTML.js

– To run, execute node loggingHTML.js
– In the browser, type the URL you see in the node console

8INTERNAL USE

Serving Static Files

• express.static - part of Express
– Allow us to serve files

• path
– Built-in module we use to generate a cross-platform (Windows,

Mac, Linux) path
• Example: servingFiles.js

– To run, execute node servingFiles.js

9INTERNAL USE

Additional Functionality to request/response

• Express expands the request and response objects
• request.ip - ip address
• request.get - to obtain HTTP headers
• request.status - to set status code
• request.send
• response.redirect

– Redirects to a particular site
• response.sendFile

– To send a file
• response.json - sending JSON response
• Example: additionalFunc.js (redirect)

– To run, execute node additionalFunc.js

10INTERNAL USE

HTTP Verbs/Methods

• An HTTP request has a method/verb associated with it
• HTTP Methods

– GET
» Gets a resource
» Most common method used
» Idempotent (executing many times does not cause server change)

– POST
» Generates a change of the server state (e.g., you bought an item)
» Non-idempotent

– PUT
» To update or change (replaces the entire resource)
» Idempotent

– DELETE
» To remove a resource
» Idempotent

– PATCH
» Can be used to update (only updates specified fields)

11INTERNAL USE

HTTP Verbs/Methods

• You can use Express to handle different HTTP verbs
• curl application enables you to generate http requests with different

methods/verbs. You will find it in most systems (no need to install it). Just in case
(https://curl.haxx.se/download.html)

• Example: httpMethods.js
– To execute, type node httpMethods.js
– In the browser, type the URL shown in the node console

• You can issue requests using curl. For example, using PC’s cmd and assuming port
8001

– GET à curl http://localhost:8001
– POST à curl –X POST http://locahost:8001
– PUT à curl –X PUT http://locahost:8001
– DELETE à curl –X DELETE http://locahost:8001
– In PowerShell use curl –Method Get or curl –Method Post or curl –Method

Put or curl –Method Delete
• API Client/Design tools (allow you to issue HTTP requests, among other things)

– Insomnia - https://insomnia.rest/products/insomnia/
– Postman - https://www.postman.com/downloads/

https://curl.haxx.se/download.html
http://localhost:8001/
http://locahost:8001/
http://locahost:8001/
http://locahost:8001/
https://insomnia.rest/products/insomnia/
https://www.postman.com/downloads/

12INTERNAL USE

Routing

• Routing - Mapping a URI and HTTP verb to a request handler
• In Express, you specify routes using strings and can specify them as regular

expressions
• Route Parameters - named URL segments used to capture the values specified at

their position in the URI. The values are available in the request.params object
– Example:

» Route path: /users/:userId/books/:bookId
» Request URL: http://localhost:3000/users/34/books/8989
» request.params: { "userId": "34", "bookId": "8989" }

• Example: routing.js
– To execute, type node routing.js

http://localhost:3000/users/34/books/8989

13INTERNAL USE

Dynamic Generation of HTML

• View/templating engines - Allows you to generate dynamic HTML
• EJS (Embedded JavaScript) engine - the templating engine that

compiles/generates HTML for you
• EJS is a superset of HTML
• Files with the .ejs extension are placed in a folder where Express can locate them
• To install ejs

– npm install ejs
• Interpolate variables in a template file by using:
 <%= variableName %>
• Inclusion of the ejs file in another by using:
 <% fileNameWithoutEJSExtension %> // Notice no = in <%
• Example: dynamicHTML.js, templates/welcome.ejs

– To run, execute node dynamicHTML.js

14INTERNAL USE

Retrieving URL Parameters (Query Strings)

• We can use request.query.<ARGUMENT_NAME> to retrieve URL parameters
(query strings) (what we provided during a GET request after the ?)

• Example: formGet.html, queryArguments.js, templates/courseInfo.js
– To execute, type node queryArguments.js

15INTERNAL USE

Retrieving values associated with POST

• The body-parser module allows you to retrieve parameters submitted using post
• To access a parameter: request.body.<PARAMETER_NAME>
• To install the body-parser module

– npm install body-parser
• Example: formPost.html, postParameters.js, templates/courseInfo.js

– To execute, type node postParameters.js
– Open formPost.html in the browser and provide some data

• Aside: You can clear form data (and other data) using Chrome’s Clear Cache
Extension. See https://www.cs.umd.edu/~nelson/classes/resources/web/ and look
for “Clear Cache Extension”)

– After running the extension, you can clear previous entries typed in a text field
– Can also be used for clearing cached CSS

https://www.cs.umd.edu/~nelson/classes/resources/web/

16INTERNAL USE

Retrieving Form Data

• Example: Retrieving data sent via get
– To execute, type node formsSummaryGet.js
– In the browser, open formsSummaryGet.html and provide data

• Example: Retrieving data sent via post
– To execute, type node formsSummaryPost.js
– In the browser, open formsSummaryPost.html and provide data

17INTERNAL USE

Response (res) Methods

• Express extends basic Node methods, which could be used as you write your
routes. We recommend you only use Express methods

• Express methods associated with the response object (res)
• res.send([body]) - The body parameter can be a Buffer object, a String, an object,

Boolean, or an Array
• res.end([data] [, encoding]) - Ends the response process. This method actually

comes from Node core, specifically the response.end() method of
http.ServerResponse. Use to end the response without any data quickly. If you
need to respond with data, use methods such as res.send() and res.json()

• res.json([body]) - Sends a JSON response. This method sends a response (with the
correct content type) that is the parameter converted to a JSON string using
JSON.stringify(). The parameter can be any JSON type, including object, array,
string, Boolean, number, or null, and you can also use it to convert other values to
JSON

• res.status(code) - Sets the HTTP status for the response. It is a chainable alias of
Node’s response.statusCode

• Example: summaryExample/example.js

18INTERNAL USE

Package scripts

• You can add to package.json “scripts” property, scripts you would like to run
• There are some predefined names (e.g., “test”, “start”)
• To run a script (predefined names): npm start
• To run scripts npm run <SCRIPT_NAME>
• Example: package.json, “scripts”

19INTERNAL USE

Nodemon

• nodemon utility restarts the server after a modification has taken place
• To run: nodemon <application>

– nodemon .\queryArguments.js
– Modify queryArguments.js to see the server restarted
– Installation: npm i -g nodemon

» Can use --save-dev to save as a development dependency in
package.json

– In PowerShell before running nodemon you need to execute (in Admin
Terminal): Set-ExecutionPolicy Unrestricted

» /* WARNING */

20INTERNAL USE

References

• https://expressjs.com/en/api.html
• https://expressjs.com/en/guide/routing.html
• Express in Action

 Writing, building, and testing Nodes.js applications
 Evan M. Hahn
 April 2016 , ISBN 9781617292422

https://expressjs.com/en/api.html
https://expressjs.com/en/guide/routing.html

