
1INTERNAL USE

CMSC388B

Web Application Development with JavaScript

JavaScript Intro
Department of Computer Science

University of MD, College Park

Slides material developed by Ilchul Yoon, Nelson Padua-Perez

2INTERNAL USE

JavaScript
• A lightweight, interpreted, or just-in-time compiled language that can

function as both a procedural and an object-oriented language
• Appears in a web browser and non-browser environments (e.g., Node.js,

Apache CouchDB)
• It allows us to:

– To create interactive web pages
– To control a browser application

» Open and create new browser windows
» Download and display the contents of any URL

– To interact with the user
– Ability to interact with HTML forms
– Access data from databases and other online resources

• Example: SqrTable.html

3INTERNAL USE

ECMAScript

• Ecma International - Organization that creates standards
– https://www.ecma-international.org/

• Scripting language - language that acts on a system or an entity
• ECMAScript - specification for a general-purpose scripting language

– Provides rules that a scripting language must observe to be
considered ECMAScript compliant

• ECMAScript specification
– https://www.ecma-international.org/publications-and-standards/standards/ecma-262/

https://www.ecma-international.org/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/

4INTERNAL USE

JavaScript

• Javascript - a general-purpose scripting language that conforms to the
ECMAScript specification

• JavaScript is based on the ECMAScript specification
• Reference: https://developer.mozilla.org/en-US/docs/Web/JavaScript

https://developer.mozilla.org/en-US/docs/Web/JavaScript

5INTERNAL USE

JavaScript Engine

• JavaScript engines process JavaScript code
– Safari - JavaScriptCore
– Chrome - V8
– Firefox - Spidermonkey
– Edge - Chakra

• Client-Side JavaScript: the result of embedding a JavaScript engine
in a web browser

• A JavaScript program can appear:
– In a file by itself, typically named with the extension .js
– In HTML files between a <script> and </script> tags

• Example: TemplateJS.html
– Right-clickàInspectàConsole to see console.log() output

6INTERNAL USE

“use strict” in the template JS

• JavaScript's strict mode, introduced in ES5
• A way to opt-in to a restricted variant of JavaScript, thereby

implicitly opting out of "sloppy mode"
• Several changes to normal JavaScript semantics:

– Makes JavaScript silent errors throw errors
– Prohibits some syntax likely to be defined in future versions of

ECMAScript
• Examples (not allowed with strict mode):

– Declaring a function in a block
» if (a < b) { function f() {} }

– Setting a value to an undeclared variable

7INTERNAL USE

Processing HTML Page with JS
• DOM - Document Object Model

– Structured representation of the HTML page
– Every HTML element is represented as a node
– Browser uses HTML to build the DOM and can fix problems with the HTML,

so a valid DOM is generated
• Lifecycle

– Set the user interface
» Parse the HTML and build the DOM
» Process (execute) JavaScript code

– Enter a loop and wait for events to take place
• When JavaScript is seen on a page, the DOM construction is halted, and

JavaScript code execution is started
• JS can modify the DOM (e.g., creating and modifying nodes)

– One reason why <script></script> elements appear at the bottom of a page

8INTERNAL USE

Event-Handling
• Relies on a single-threaded execution model
• An event queue keeps track of events that have taken place but have

not been processed (the event-handler function for the event has not
been called)

• All generated events (whether user-generated or not) are placed in
the event queue in the order they were detected by the browser

– The browser mechanism that detects events and adds them to
the event queue is separate from the thread that is handling the
events

• JavaScript periodically checks the event queue, and if any event is
found, it executes the appropriate handler (if one was defined)

9INTERNAL USE

Browser’s Global Objects

• Browsers provide two global objects: window and document
• window object - represents the window in which a page resides

– Provides access to other global objects (e.g., document)
– Keeps track of the user’s global variables
– Allows JavaScript to access Browser’s APIs

• document object
– Property of the window object that represents the DOM of the

current page
– Via this object, you can access & modify the DOM

10INTERNAL USE

Types of JavaScript Code

• Function Code
– Code contained in a function

• Global Code
– Code placed outside all functions
– Automatically executed by JS engine

• As in Java, a stack keeps track of function calls. Each function call
generates a function execution context (stack frame)

• There is one frame called the global execution context created
when the JS program starts executing

– Only one global execution context (at the bottom of the stack)

11INTERNAL USE

JavaScript Comments

• Comments in JavaScript
– Used to provide information to the programmer
– Used to identify sections in your code
– Ignored by the JavaScript interpreter

• Two types of comments
– Inline comment // This is a comment until the end of the line
– Block comment
 /* The following is a
 comment that spans
 several lines */

12INTERNAL USE

Variable Declarations

• Variable declaration (no type specification)

var x; /* old (avoid)*/
let x; /* for variables*/

const x; /* for constants*/

• Variables names must start with:
– A letter, underscore, or dollar sign and then
– Can be followed by any number of letters, underscores, dollar

signs, or digits

13INTERNAL USE

JavaScript Data Types

• JavaScript has no class concept
– We have functions (which are objects)
– Using functions and prototypal inheritance, we can implement

the concept of classes
– Syntax was added to define classes as you do in Java, but it is

just syntactic sugar (no actual classes as in Java)
• Two kinds of types

– Primitive types - data that is not an object and has no methods.
All primitives are immutable

– Reference types - references to objects

14INTERNAL USE

JavaScript Data Types
• Seven (7) primitive data types in JavaScript

– null - has the value null
– boolean - has the value true or false
– number - numeric data type using a double-precision 64-bit floating point

form (IEEE 754)
– string - character sequence delimited by single, double quotes, or ``
– undefined - value automatically assigned to a variable just declared or to

parameters that have no corresponding arguments
– bigint - represents integers in arbitrary precision format (precision limited

by the host system)
– symbol - represents a unique identifier (guaranteed to be unique)

» let x = Symbol("A"); let y = Symbol("A"); // x === y is false
• typeof operator

– Returns string indicating the type of data
– Note: typeof "house" will return string

15INTERNAL USE

JavaScript Data Types
• Reference types represent addresses of objects
• Object - a collection of properties

– Property - a string that is associated with a value
– Value - could be a primitive or reference to an object

• Object creation
let a = new Object(); // first approach
let b = {}; // second approach
let c = { // third approach
 id: 789,
 name: "Rose Smith"
};

• You could add properties: a.name = “Rose”;
• JavaScript relies on garbage collection

– When an object is no longer needed, set the variable to null

