
Go and Data Persistence

Why Data Persistence
● Preserve Data if Server

crashes
● Scalability of applications
● High throughput and

availability

Types of Databases
● Sql (MySql, Postgres)
● NoSql (Mongo, DynamoDb)
● Timeseries
● Graph Db (can be

implemented with Mongo)

How do we connect to a database ?
● Need a “driver” to connect to

our databse
● Can write queries directly in

the native programing
language

● Can use ORM (Object
Relational Mapper)

● We will write our own
queries

Example Create Statement for Postgres
● sqlStatement := `INSERT INTO table1 (field1,

field2, field3, field4) VALUES ($1, $2, $3,
$4)`

● Inserts into “table1” that db is connected to a new row with
values for field1, field2, field3 and field4 (the columns)

● Need to store those fields in a struct and then reference them
at invocation

● Need to allow for error handling

Example Select Statement for Postgres
● sqlStatement := “SELECT field1, field2,

field3, field4 FROM table1”
● Returns field1, fields, field3 and field4 from table1
● Can be all the fields, i.e. the entire row
● Can be subset of fields
● Depends on the needs of the application

Example Update Statement for Postgres
● sqlStatement := `UPDATE books SET title = $1,

author = $2, isbn = $3, price = $4 WHERE id =
$5`

● Updates into “table1” that db is connected to values for object
whose id is value is represented by $5

● Fields can be all the columns for that row or a subset of fields

Example Delete Statement for Postgres
● sqlStatement := `DELETE FROM books WHERE id =

$1`
● Deletes row from “table1” that db is connected to for object

whose id is value represented by $1

How to execute SQL statement from Go
● First generate string that represents the SQL statement (what

the previous slides have demonstrated)
● Next execute the following command:

 _, err := db.Exec(sqlStatement, param1,
param2,…)- pass as many values that your
query needs

● Always return the err – can be nil
● Err will be nil if statement is executed

successfully

