10/19/21

Transactions

Overview

e Transaction: A sequence of database actions enclosed
within special tags
e Properties:
e Atomicity: Entire transaction or nothing
o Consistency: Transaction, executed completely, takes database
from one consistent state to another
e Isolation: Concurrent transactions appear to run in isolation
e Durability: Effects of committed transactions are not lost
e Consistency: Programmer needs to guarantee this
DBMS can do a few things, e.g., enforce constraints on the data

e Rest: DBMS guarantees

How does..

.. this relate to queries that we discussed ?
e Queries don't update data, so durability and consistency not
relevant
e Would want concurrency
Consider a query computing balance at the end of the day

e Would want isolation

What if somebody makes a transfer while we are computing
the balance

Typically not guaranteed for such long-running queries

e TPC-Cvs TPC-H

e data entry vs decision support

Assumptions and Goals

e Assumptions:
e The system can crash at any time
e Similarly, the power can go out at any point
Contents of the main memory won’t survive a crash, or power outage

e BUT... disks are durable. They might stop, but data is not lost.

For now.
o Disks only guarantee atomic sector writes, nothing more
e Transactions are by themselves consistent

e Goals:
e Guaranteed durability, atomicity

e As much concurrency as possible, while not compromising
isolation and/or consistency
Two transactions updating the same account balance... NO
Two transactions updating different account balances... YES

10/19/21

Next...

e Concurrency control schemes

e A CC scheme is used to guarantee that concurrency does not
lead to problems
e For simplicity, we will ignore durability during this section
So no crashes
Though transactions may still abort

e Schedules

e When is concurrency okay ?
e Serial schedules
o Serializability

A Schedule

Transactions:
T1: transfers $50 from Ato B
T2: transfers 10% of Ato B
Database constraint: A + B is constant (checking+saving accts)

T1 T2
read(A)
VAmt:(A‘F;O Effect: Before After
read(B) A 100 45
B=B+50 B 50 105
write(B)
read(A)
tmp =A*0.1 Each transaction obeys the
A=A—-tmp constraint.
write(A)
read(B) The schedule does too.
B = B+ tmp
write(B)

10/19/21

Schedules

e A schedule is simply a (possibly interleaved) execution
sequence of transaction instructions

e Serial Schedule: A schedule in which transactions
appear one after the other
e i.e., No interleaving

e Serial schedules satisfy isolation and consistency
e Since each transaction by itself does not introduce inconsistency

Another serial schedule

T1 T2
read(A) Effect: Before After
tmp =A’0.1 A 100 40
A=A-tmp
write(A) B 50 110
read(B)
B = B+ tmp
write(B)

read(A)

A=A-50)

erte(A) Consistent ?

read(B) Constraint is satisfied.

B=B+50 . o)

write(B) Since each Xion is consistent, any

serial schedule must be consistent

10/19/21

Another schedule

T1 T2

read(A)

A=A-50

write(A)
read(A)
tmp = A*0.1
A=A-tmp
write(A)

read(B)

B=B+50

write(B)
read(B)
B =B+ tmp
write(B)

Is this schedule okay ?

Lets look at the final effect...

Effect: Before After
A 100 45
B 50 105

Consistent.
So this schedule is okay too.

9
Another schedule
T1 T2
read(A) ; "
A=A -50 Is this schedule okay 7
write(A)
read(A) Lets look at the final effect...
tmp = A*0.1
A=A-t
write(A) mp Effect: Before After
A 100 45
read(B) B 50 105
B=B+50
write(B)
Further, the effect same as the
read(B) serial schedule 1.
B = B+ tmp
write(B) Called serializable
10

10/19/21

Example Schedules (Cont.)
A “bad” schedule

1 T2
read(A)
A=A-50 Effect: Before After
read(A) A 100 50
tmp = A*0.1 B 50 60
A=A-tmp
write(A)
read(B)
Not consistent
write(A)
read(B)
B=B+50
write(B)
B =B+ tmp
write(B)
11
Serializability
e A schedule is called serializable if:
e ts final effect is the same as that of a serial schedule
e Serializability - database remains consistent
o Since serial schedules are fine
e Non-serializable schedules are unlikely to result in
consistent databases
e We will ensure serializability
e Though often relaxed in real high-throughput environments...
12

10/19/21

Serializability

e Not possible to look at all n! serial schedules to check if
the effect is the same
¢ Instead ensure serializability by disallowing certain schedules

e Conflict serializability

e View serializability
o allows more schedules

13

Conflict Serializability

e Two read/write instructions “conflict” if
o They are by different transactions
e They operate on the same data item
o Atleast one is a “write” instruction

e Why do we care ?

o If two read/write instructions don’t conflict, they can be
“swapped” without any change in the final effect

« If they conflict they CAN'T be swapped

14

10/19/21

Equivalence by Swa

pping
;

Effect: Before After
A 100 45
B 50 105

T1 T2 T T2
read(A) read(A)
A=A-50 A=A-50
write(A) write(A)
read(A) read(A)
tmp = A*0.1 tmp = A*0.1
A=A—tmp A=A-tmp
write(A)
read(B)
read(B) write(A)
B=B+50 B=B+50
write(B) write(B)
read(B) read(B)
B =B+ tmp B =B+ tmp
write(B) write(B)

Effect: Before After

A 100 45
B 50 105

15
Equivalence by Swapping

T1 T2 T1 T2

read(A) read(A)

A=A-50 A=A-50

write(A) write(A)
read(A) read(A)
tmp =A*0.1 tmp =A*0.1
A=A—tmp A=A—-tmp
write(A) write(A)

read(B) read(B)

B=B+50 B=B+50

write(B) read(B)
read(B) write(B)
B =B+ tmp B = B+ tmp
write(B) write(B)

Effect: Before After Effect: Before After

A 100 45
B 50 105

A 100 45
B 50 55

16

10/19/21

Conflict Serializability

e Conflict-equivalent schedules:

S’ are called conflict-equivalent

If S can be transformed into S’ through a series of swaps, S and

conflict-equivalence guarantees same final effect on database

e A schedule S is conflict-serializable if it is conflict-
equivalent to a serial schedule

17
Equivalence by Swapping
T1 T2 T1 T2
read(A) read(A)
A=A-50 A=A-50
write(A) write(A)
read(A) read(A)
tmp =A*0.1 tmp =A*0.1
A=A—tmp A=A—tmp
write(A)
read(B)
read(B) B=B+50
B=B+50 write(A)
write(B) write(B)
read(B) read(B)
B =B+ tmp B = B+ tmp
write(B) write(B)
Effect: Before After Effect: Before After
A 100 45 == A 100 45
B 50 105 B 50 105
18

10/19/21

Equivalence by Swapping

T1 T2 T1 T2
read(A) read(A)
A=A-50 A=A-50
write(A) write(A)
read(A)
tmp = A*0.1 read(B)
A=A-tmp B=B+50
write(A) write(B)
read(A)
read(B) tmp = A*0.1
B=B+50 A=A-tmp
write(B) write(A)
read(B) read(B)
B =B+ tmp B =B+ tmp
write(B) write(B)
Effect: Before After Effect: Before After
A 100 45 == A 100 45
B 50 105 B 50 105

19

Example Schedules (Cont.)
A “bad” schedule

T1 T2

read(A)
A=A-50

Can’t move Y below X
Y read(B) and write(B) conflict

read(A)
tmp =A*0.1
A=A-tmp
write(A)

read(B) Other options don’t work either

write(A)
read(B)
B=B+50
write(B)

Not Conflict Serializable

B = B+ tmp
write(B)

20

10/19/21

10

View-Serializability

e Following not conflict-serializable

s Ty T
read(Q)
write(Q)
write(Q)
write(Q)

BUT, it is serializable
e The conflicting write instructions don’t matter! (in absence of reads)
e The final write is the only one that matters

e View-serializability, for S’ and S, and each datum Q:
e if T;reads initial value of Q in S, must also in S’
e if T;reads value written from T;in S, must also in §’
o if T; performs final write to Q in S, must also in S’

21
Other notions of serializability
T Ts
read(A)
A:=A-50
write(A)
read(B)
B:=B-10
write(B)
read(B)
B:=B+50
write(B)
read(A)
A=A+10
write(A)
e Not conflict-serializable or view-serializable, but serializable
e Mainly because of the +/- only operations
e Requires analysis of the actual operations, not just read/write
operations
e Most high-performance transaction systems will allow these
22

10/19/21

11

Testing for conflict-serializability

e Given a schedule, determine if it is conflict-serializable

Draw a precedence-graph over the transactions

e Adirected edge from T1 to T2, if
they have conflicting instructions, and
T1’s conflicting instruction comes first

If there is a cycle in the graph, not conflict-serializable

e Can be checked in at most O(n+e) time, where n is the number of
vertices, and e is the number of edges

If there is none, conflict-serializable

Whereas: testing for view-serializability is NP-hard.

23
Example Schedule (Schedule A) + Precedence Graph
T T T T Ts
read(X)
read(Y)
Y
read(V) /\
readw)| 1 T
read(W)
read(Y)
write(Y)
read(U) T4
read(Y) T3¥Z/‘
read(U)
write(U)
24

10/19/21

12

Recap so far...

e We discussed:
e Serial schedules, serializability
o Conflict-serializability, view-serializability
e How to check for conflict-serializability

e We haven't discussed:
e How to guarantee serializability ?

Allowing transactions to run, and then aborting them if the schedules
aren’t serializable can be expensive

e We can instead use schemes to guarantee that the schedule will
be conflict-serializable

e Also, recoverability ?

25
Recoverability
e Serializability is good for
consistency
T1 T2
e What if transactions fail ? fi%’fgo
e T2 has already committed write(A)
A user might have been notified read(A)
» Now T1 abort creates a problem tmp = A”0.1
. . A=A-tmp
T2 has seen its effect, so just write(A)
aborting T1 is not enough. T2
must be aborted as well (and COMMIT
possibly restarted) read(B)
But T2 is committed B=B+50
write(B)
ABORT
26

10/19/21

13

Recoverability

e Recoverable schedule: If T1 has read something T2 has
written, T2 must commit before T1
e Otherwise, if T1 commits, and T2 aborts, we have a problem

e Cascading rollbacks: If T10 aborts, T11 must abort, and
hence T12 must abort and so on.

To T Thp
read(A)
read(B)
write (A)
read(A)
write(A)
abort read(A)
27
Recoverability
e Dirty read: Reading a value written by a transaction that
hasn’t committed yet
e Cascadeless schedules:
e A transaction only reads committed values.
e Soif T1 has written A, but not committed it, T2 can’t read it.
No dirty reads
e Cascadeless = No cascading rollbacks
e That's good
o We will try to guarantee that as well
28

10/19/21

14

Recap so far...

e We discussed:
e Serial schedules, serializability
o Conflict-serializability, view-serializability
e How to check for conflict-serializability
o Recoverability, cascade-less schedules

e We haven'’t discussed:

e How to guarantee serializability ?

Allowing transactions to run, and then aborting them if the schedules
aren’t serializable can be expensive
e We can instead use schemes to guarantee that the schedule will
be conflict-serializable
Hint: locks

29

Concurrency Control

30

10/19/21

15

Approach, Assumptions etc..

e Approach

e Guarantee conflict-serializability by limiting concurrency
Lock-based

e Assumptions:
o Still ignoring durability
So no crashes
Though transactions may still abort

e Goal:
o Serializability
e Minimize the bad effect of aborts (cascade-less schedules only)

31

Lock-based Protocols

e Transactions must acquire locks before using data
e Two types:

e Shared (S) locks (also called read locks)
Obtained if we want to only read an item

e Exclusive (X) locks (also called write locks)
Obtained for updating a data item

32

10/19/21

16

Lock instructions

e New instructions

- lock-S: shared lock request
- lock-X: exclusive lock request

- unlock: release previously held lock

T T2
Example schedule:
read(B) read(A)
B <B-50 read(B)
write(B) display(A+B)
read(A)
A<A+50
write(A)
33
Lock instructions
e New instructions
- lock-S: shared lock request
- lock-X: exclusive lock request
- unlock: release previously held lock
T T2
Example schedule:
lock-X(B) lock-S(A)
read(B) read(A)
B <B-50 unlock(A)
write(B) lock-S(B)
unlock(B) read(B)
unlock(B)
lock-X(A) display(A+B)
read(A)
A<A+50
write(A)
unlock(A)
34

10/19/21

17

Lock-based Protocols

e Lock requests are made to the concurrency control manager

o It decides whether to grant a lock request

e Assume T2 holds lock, T1 asks for a lock on same:

Held lock Lock wanted Allow?
Shared Shared YES
Shared Exclusive NO

Exclusive - NO

e If compatible, grant the lock, otherwise T1 waits in a queue.

35
Lock instructions
Not enough to take minimum
e New instructions locks when you need to
read/write something!
- lock-S: shared lock request
- lock-X: exclusive lock request
- unlock: release previously held lock
T T2
Example schedule:
lock-X(B) - lock-S(A)
read(B) read(A)
B <B-50 unlock(A)
write(B)
unlock(B) 2 lock-S(B)
/ read(B)
lock-X(A) unlock(B)
read(A) L display(A+B)
A <A+ 50
write(A) e
unlock(A) Not serializable
36

10/19/21

18

e Phase 1: Growing phase
e Transaction may obtain locks
e But may not release them

e Phase 2: Shrinking phase

e Only release locks

e 2PL guarantees conflict-

serializability

e Jock-point: the time at which a
transaction acquired last lock

o if Jock-point(T1) < lock-
point(T2), there can’t be an
edge from T2 to T1 in the
precedence graph

2-Phase Locking Protocol (2PL)

T1
lock-X(B)
read(B)
B <B-50
write(B)
lock-X(A)

unlock(B)
read(A)
A<A+50
write(A)
unlock(A)

37

2 Phase Locking
e Example: T1in 2PL

T1

lock-X(B)
(read(B)
B<B-50
Growing phase write(B)
< lock-X(A)
read(A)
A€ A-50
\ write(A)

unlock(B)
unlock(A)

Shrinking phase {

38

10/19/21

19

2 Phase Locking

e Guarantees conflict-serializability,
e but not cascade-less recoverability

T1 T2 T3
lock-X(A), lock-S(B)
read(A)
read(B)
write(A)
unlock(A), unlock(B)
lock-X(A)
read(A)
write(A)
unlock(A)
commit lock-S(A)
read(A)
commit

<xction fails>

39

2 Phase Locking

e Guarantees conflict-serializability,
e but not recoverability
e and cascades can still happen

e Guaranteeing just recoverability:

o If T2 performs a dirty read from T1, T2 can’t commit unless T1
either commits or aborts
If T1 commits, T2 can proceed with committing
If T1 aborts, T2 must abort

e So cascades still happen

40

10/19/21

20

Strict 2PL

e Release exclusive locks only at the very
end, together with commit or abort

T T2 T3
lock-X(A), lock-S(B)
read(A)
read(B)
write(A)
unlock(A), unlock(B)
| v lock-X(A)
read(A)
Strict 2PL write(A)
will not unl°°k§A)
llow that Commit lock-S(A)
a read(A)
Commit
<xction fails>
41

Strict 2PL

e Release exclusive locks only at the very
end, just before commit or abort

T1 T2 T3
lock-X(A), lock-S(B)
read(A)
read(B)
write(A)
unlock(A), unlock(B)
commit
lock-X(A)
read(A)
write(A)
unlock(A)
commit
lock-S(A)
read(A)
commit

Works. Guarantees cascade-less and recoverable schedules.

42

10/19/21

21

Strict 2PL

e Release exclusive locks only at the very
end, just before commit or abort
¢ Read locks are ignored

e Rigorous 2PL: Release both exclusive and
read locks only at the very end
o Makes serializability order === the commit order

e More intuitive behavior for the users
No difference for the system

43

Strict 2PL

e Lock conversion:

e Transaction might not be sure what it needs a
write lock on

o Start with a S lock
e Upgrade to an X lock later if needed

e Doesn’t change any of the other properties of
the protocol

44

10/19/21

22

Implementation of Locking

e A separate process, or a separate module

e Uses a lock table to keep track of currently
assigned locks and the requests for locks
e Read up in the book

45

Recap so far...
e Concurrency Control Scheme

e A way to guarantee serializability, recoverability etc

e Lock-based protocols

e Use locks to prevent multiple transactions accessing the
same data items

e 2 Phase Locking

e Locks acquired during growing phase, released during
shrinking phase

e Strict 2PL, Rigorous 2PL

46

10/19/21

23

