
10/19/21

1

Transactions

1

Overview
l Transaction: A sequence of database actions enclosed

within special tags
l Properties:

l Atomicity: Entire transaction or nothing
l Consistency: Transaction, executed completely, takes database

from one consistent state to another
l Isolation: Concurrent transactions appear to run in isolation
l Durability: Effects of committed transactions are not lost

l Consistency: Programmer needs to guarantee this
l DBMS can do a few things, e.g., enforce constraints on the data

l Rest: DBMS guarantees

2

10/19/21

2

How does..
l .. this relate to queries that we discussed ?

l Queries don’t update data, so durability and consistency not
relevant

l Would want concurrency
l Consider a query computing balance at the end of the day

l Would want isolation
l What if somebody makes a transfer while we are computing

the balance
l Typically not guaranteed for such long-running queries

l TPC-C vs TPC-H
l data entry vs decision support

3

Assumptions and Goals
l Assumptions:

l The system can crash at any time
l Similarly, the power can go out at any point

l Contents of the main memory won’t survive a crash, or power outage
l BUT… disks are durable. They might stop, but data is not lost.

l For now.
l Disks only guarantee atomic sector writes, nothing more
l Transactions are by themselves consistent

l Goals:
l Guaranteed durability, atomicity
l As much concurrency as possible, while not compromising

isolation and/or consistency
l Two transactions updating the same account balance… NO
l Two transactions updating different account balances… YES

4

10/19/21

3

Next…
l Concurrency control schemes

l A CC scheme is used to guarantee that concurrency does not
lead to problems

l For simplicity, we will ignore durability during this section
l So no crashes
l Though transactions may still abort

l Schedules

l When is concurrency okay ?
l Serial schedules
l Serializability

5

A Schedule

T1
read(A)
A = A -50
write(A)
read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)
read(B)
B = B+ tmp
write(B)

Transactions:
T1: transfers $50 from A to B
T2: transfers 10% of A to B

Database constraint: A + B is constant (checking+saving accts)

Effect: Before After
A 100 45
B 50 105

Each transaction obeys the
constraint.

The schedule does too.

6

10/19/21

4

Schedules
l A schedule is simply a (possibly interleaved) execution

sequence of transaction instructions

l Serial Schedule: A schedule in which transactions
appear one after the other
l i.e., No interleaving

l Serial schedules satisfy isolation and consistency
l Since each transaction by itself does not introduce inconsistency

7

Another serial schedule
T1

read(A)
A = A -50
write(A)
read(B)
B=B+50
write(B)

T2
read(A)
tmp = A*0.1
A = A – tmp
write(A)
read(B)
B = B+ tmp
write(B)

Consistent ?
Constraint is satisfied.

Since each Xion is consistent, any
serial schedule must be consistent

Effect: Before After
A 100 40
B 50 110

8

10/19/21

5

Another schedule

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

Is this schedule okay ?

Lets look at the final effect…

Effect: Before After
A 100 45
B 50 105

Consistent.
So this schedule is okay too.

9

Another schedule

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

Is this schedule okay ?

Lets look at the final effect…

Effect: Before After
A 100 45
B 50 105

Further, the effect same as the
serial schedule 1.

Called serializable

10

10/19/21

6

Example Schedules (Cont.)
A “bad” schedule

Not consistent

T1
read(A)
A = A -50

write(A)
read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)
read(B)

B = B+ tmp
write(B)

Effect: Before After
A 100 50
B 50 60

11

Serializability
l A schedule is called serializable if:

l its final effect is the same as that of a serial schedule

l Serializability à database remains consistent
l Since serial schedules are fine

l Non-serializable schedules are unlikely to result in
consistent databases

l We will ensure serializability
l Though often relaxed in real high-throughput environments...

12

10/19/21

7

Serializability
l Not possible to look at all n! serial schedules to check if

the effect is the same
l Instead ensure serializability by disallowing certain schedules

l Conflict serializability

l View serializability
l allows more schedules

13

Conflict Serializability
l Two read/write instructions “conflict” if

l They are by different transactions
l They operate on the same data item
l At least one is a “write” instruction

l Why do we care ?
l If two read/write instructions don’t conflict, they can be

“swapped” without any change in the final effect
l If they conflict they CAN’T be swapped

14

10/19/21

8

Equivalence by Swapping
T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

T1
read(A)
A = A -50
write(A)

read(B)

B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp

write(A)

read(B)
B = B+ tmp
write(B)

Effect: Before After
A 100 45
B 50 105

Effect: Before After
A 100 45
B 50 105

==

15

Equivalence by Swapping
T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50

write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)

B = B+ tmp
write(B)

Effect: Before After
A 100 45
B 50 105

Effect: Before After
A 100 45
B 50 55

! ==

16

10/19/21

9

Conflict Serializability
l Conflict-equivalent schedules:

l If S can be transformed into S’ through a series of swaps, S and
S’ are called conflict-equivalent

l conflict-equivalence guarantees same final effect on database

l A schedule S is conflict-serializable if it is conflict-
equivalent to a serial schedule

17

Equivalence by Swapping
T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50

write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp

write(A)

read(B)
B = B+ tmp
write(B)

Effect: Before After
A 100 45
B 50 105

Effect: Before After
A 100 45
B 50 105

==

18

10/19/21

10

Equivalence by Swapping
T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

Effect: Before After
A 100 45
B 50 105

Effect: Before After
A 100 45
B 50 105

==

19

Example Schedules (Cont.)
A “bad” schedule

T1
read(A)
A = A -50

write(A)
read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)
read(B)

B = B+ tmp
write(B)

X

Y Can’t move Y below X
read(B) and write(B) conflict

Other options don’t work either

Not Conflict Serializable

20

10/19/21

11

View-Serializability
l Following not conflict-serializable

BUT, it is serializable
l The conflicting write instructions don’t matter! (in absence of reads)
l The final write is the only one that matters

l View-serializability, for S’ and S, and each datum Q:
l if Ti reads initial value of Q in S, must also in S’
l if Ti reads value written from Tj in S, must also in S’
l if Ti performs final write to Q in S, must also in S’

21

Other notions of serializability

l Not conflict-serializable or view-serializable, but serializable
l Mainly because of the +/- only operations

l Requires analysis of the actual operations, not just read/write
operations

l Most high-performance transaction systems will allow these

22

10/19/21

12

Testing for conflict-serializability
l Given a schedule, determine if it is conflict-serializable

l Draw a precedence-graph over the transactions
l A directed edge from T1 to T2, if

l they have conflicting instructions, and
l T1’s conflicting instruction comes first

l If there is a cycle in the graph, not conflict-serializable
l Can be checked in at most O(n+e) time, where n is the number of

vertices, and e is the number of edges
l If there is none, conflict-serializable

l Whereas: testing for view-serializability is NP-hard.

23

T1 T2 T3 T4 T5
read(X)

read(Y)
read(Z)

read(V)
read(W)
read(W)

read(Y)
write(Y)

write(Z)
read(U)

read(Y)
read(Z)
write(Z)

read(U)
write(U)

Example Schedule (Schedule A) + Precedence Graph

T4

T1 T2

Y

Y

T3

Z

Z

24

10/19/21

13

Recap so far…
l We discussed:

l Serial schedules, serializability
l Conflict-serializability, view-serializability
l How to check for conflict-serializability

l We haven’t discussed:
l How to guarantee serializability ?

l Allowing transactions to run, and then aborting them if the schedules
aren’t serializable can be expensive

l We can instead use schemes to guarantee that the schedule will
be conflict-serializable

l Also, recoverability ?

25

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

Recoverability
l Serializability is good for

consistency

l What if transactions fail ?
l T2 has already committed

l A user might have been notified
l Now T1 abort creates a problem

l T2 has seen its effect, so just
aborting T1 is not enough. T2
must be aborted as well (and
possibly restarted)

l But T2 is committed

ABORT

COMMIT

26

10/19/21

14

Recoverability
l Recoverable schedule: If T1 has read something T2 has

written, T2 must commit before T1
l Otherwise, if T1 commits, and T2 aborts, we have a problem

l Cascading rollbacks: If T10 aborts, T11 must abort, and
hence T12 must abort and so on.

abort

27

Recoverability
l Dirty read: Reading a value written by a transaction that

hasn’t committed yet

l Cascadeless schedules:
l A transaction only reads committed values.
l So if T1 has written A, but not committed it, T2 can’t read it.

l No dirty reads

l Cascadeless à No cascading rollbacks
l That’s good
l We will try to guarantee that as well

28

10/19/21

15

Recap so far…
l We discussed:

l Serial schedules, serializability
l Conflict-serializability, view-serializability
l How to check for conflict-serializability
l Recoverability, cascade-less schedules

l We haven’t discussed:
l How to guarantee serializability ?

l Allowing transactions to run, and then aborting them if the schedules
aren’t serializable can be expensive

l We can instead use schemes to guarantee that the schedule will
be conflict-serializable
l Hint: locks

29

Concurrency Control

30

10/19/21

16

Approach, Assumptions etc..
l Approach

l Guarantee conflict-serializability by limiting concurrency
l Lock-based

l Assumptions:
l Still ignoring durability

l So no crashes
l Though transactions may still abort

l Goal:
l Serializability
l Minimize the bad effect of aborts (cascade-less schedules only)

31

Lock-based Protocols
l Transactions must acquire locks before using data
l Two types:

l Shared (S) locks (also called read locks)
l Obtained if we want to only read an item

l Exclusive (X) locks (also called write locks)
l Obtained for updating a data item

32

10/19/21

17

Lock instructions
l New instructions

- lock-S: shared lock request
- lock-X: exclusive lock request
- unlock: release previously held lock

Example schedule:
read(B)
B ßB-50
write(B)
read(A)
A ßA + 50
write(A)

read(A)
read(B)
display(A+B)

T1 T2

33

Lock instructions
l New instructions

- lock-S: shared lock request
- lock-X: exclusive lock request
- unlock: release previously held lock

Example schedule:
lock-X(B)
read(B)
B ßB-50
write(B)
unlock(B)

lock-X(A)
read(A)
A ßA + 50
write(A)
unlock(A)

lock-S(A)
read(A)
unlock(A)
lock-S(B)
read(B)
unlock(B)
display(A+B)

T1 T2

34

10/19/21

18

Lock-based Protocols

l Lock requests are made to the concurrency control manager

l It decides whether to grant a lock request

l Assume T2 holds lock, T1 asks for a lock on same:

l If compatible, grant the lock, otherwise T1 waits in a queue.

Held lock Lock wanted Allow?

Shared Shared YES

Shared Exclusive NO

Exclusive - NO

35

Lock instructions
l New instructions

- lock-S: shared lock request
- lock-X: exclusive lock request
- unlock: release previously held lock

Example schedule:
lock-X(B)
read(B)
B ßB-50
write(B)
unlock(B)

lock-X(A)
read(A)
A ßA + 50
write(A)
unlock(A)

lock-S(A)
read(A)
unlock(A)

lock-S(B)
read(B)
unlock(B)
display(A+B)

T1 T2

Not enough to take minimum
locks when you need to
read/write something!

?

Not serializable

36

10/19/21

19

2-Phase Locking Protocol (2PL)
l Phase 1: Growing phase

l Transaction may obtain locks
l But may not release them

l Phase 2: Shrinking phase
l Only release locks

l 2PL guarantees conflict-
serializability
l lock-point: the time at which a

transaction acquired last lock
l if lock-point(T1) < lock-

point(T2), there can’t be an
edge from T2 to T1 in the
precedence graph

T1
lock-X(B)
read(B)
B ßB-50
write(B)
unlock(B)

lock-X(A)
read(A)
A ßA + 50
write(A)
unlock(A)

T1
lock-X(B)
read(B)
B ßB-50
write(B)
lock-X(A)

unlock(B)
read(A)
A ßA + 50
write(A)
unlock(A)

37

2 Phase Locking
l Example: T1 in 2PL

T1

lock-X(B)
read(B)
B ß B - 50
write(B)
lock-X(A)
read(A)
A ß A - 50
write(A)

unlock(B)
unlock(A)

{Growing phase

{Shrinking phase

38

10/19/21

20

2 Phase Locking
l Guarantees conflict-serializability,

l but not cascade-less recoverability

T1 T2 T3

lock-X(A), lock-S(B)
read(A)
read(B)
write(A)
unlock(A), unlock(B)

<xction fails>

lock-X(A)
read(A)
write(A)
unlock(A)

lock-S(A)
read(A)

commit

commit

39

2 Phase Locking
l Guarantees conflict-serializability,

l but not recoverability
l and cascades can still happen

l Guaranteeing just recoverability:
l If T2 performs a dirty read from T1, T2 can’t commit unless T1

either commits or aborts
l If T1 commits, T2 can proceed with committing
l If T1 aborts, T2 must abort

l So cascades still happen

40

10/19/21

21

Strict 2PL

Strict 2PL
will not

allow that

l Release exclusive locks only at the very
end, together with commit or abort

T1 T2 T3

lock-X(A), lock-S(B)
read(A)
read(B)
write(A)
unlock(A), unlock(B)

<xction fails>

lock-X(A)
read(A)
write(A)
unlock(A)
Commit lock-S(A)

read(A)
Commit

41

Strict 2PL
l Release exclusive locks only at the very

end, just before commit or abort
T1 T2 T3

lock-X(A), lock-S(B)
read(A)
read(B)
write(A)
unlock(A), unlock(B)
commit

lock-X(A)
read(A)
write(A)
unlock(A)
commit

lock-S(A)
read(A)
commit

Works. Guarantees cascade-less and recoverable schedules.

42

10/19/21

22

Strict 2PL
l Release exclusive locks only at the very

end, just before commit or abort
l Read locks are ignored

l Rigorous 2PL: Release both exclusive and
read locks only at the very end
l Makes serializability order === the commit order
l More intuitive behavior for the users

l No difference for the system

43

Strict 2PL
l Lock conversion:

l Transaction might not be sure what it needs a
write lock on

l Start with a S lock

l Upgrade to an X lock later if needed

l Doesn’t change any of the other properties of
the protocol

44

10/19/21

23

Implementation of Locking
l A separate process, or a separate module

l Uses a lock table to keep track of currently
assigned locks and the requests for locks
l Read up in the book

45

Recap so far…
l Concurrency Control Scheme

l A way to guarantee serializability, recoverability etc

l Lock-based protocols
l Use locks to prevent multiple transactions accessing the

same data items

l 2 Phase Locking
l Locks acquired during growing phase, released during

shrinking phase

l Strict 2PL, Rigorous 2PL

46

