Linux Filesystem Quick-Reference

Directory Contents with ls

All of these take one or more directories (relative or absolute) as an argument. If not supplied, the current
directory is used. Many installations have a default shell alias for ls to supply some common options. A nice
default is ‘Is -FCA’.

Command Result

Is List the directory contents

Is -1 Long listing, with lots of details

Is -a Include files/directories beginning with a dot

Is -A Like -a, but omitting special . and .. directories

Is -1t Long listing, sorted by modified time (latest first)
Is -1tr Like -1t, but reversing the sort order

Is -1 Produce a listing in a single column

Is -m Produce a listing as a single comma-delimited line
Is -F Decorate names with type indicators (/=directory, @=link, etc.)
Is -lh Display sizes in friendly units

Is -In Display owner and group as numbers, not names
Is-d Do not expand directories

Moving Around

Command Result

cd Change the working directory to the user’s home directory

cd dir Change the working directory to dir

cd ~user Change the working directory to user’s home directory

cd - Change the working directory to the previous working directory
pushd dir Like “cd dir”, but adds dir to bash’s directory stack

popd Pop the top of the directory stack, cd’ing to the new top

File Permissions

Every file or directory has an user (owner) and group, and a set of permission bits (the first column of “ls
-17). On most systems, your group will be the same as your username, though other groups are likely to exist,
and you may be a member of some of them. The groups command will show you what groups your account
belongs to.

Here are some examples from the Fall 2018 course VM:

vmuser@f18marsh:~$ 1s -1d gitsrc drwxrwxr-x 21 vmuser vmuser 4096 Jun 21 15:16 gitsrc vimuser@f18marsh:~$
Is -1d .ssh drwx—— 2 vmuser vmuser 4096 Jun 21 14:18 .ssh vimnuser@fl18marsh:~$ Is -1 .ssh total 12 -rw -
1 vmuser vmuser 3312 Jun 21 14:17 id_ rsa -rw-rw-r— 1 vmuser vmuser 738 Jun 21 14:18 id_ rsa.pub -rw-r—r—
1 vmuser vmuser 444 Jun 21 14:18 known_ hosts

In all of these, vmuser is the owner, and all files/directories are also assigned to the group vmuser. The first
column is 10-characters wide:

Character Meaning

0 File type: d=directory, l=symlink, c=char device

Character Meaning

User (u) read (r) permission
User (u) write (w) permission
User (u) execute (x) permission

Group (g) read (r) permission
Group (g) write (w) permission
Group (g) execute (x) permission
Other (o) read (r) permission
Other (o) write (w) permission
Other (o) execute (x) permission

© 00~ O Tk W+

Anything not set is indicated with a “-”, which for character 0 means a normal file. We see that gitsrc is a
directory, readable and executable by everyone (user, group, and other), but writable only by user and group.
For directories, “executable” means a user with matching credentials can cd into that directory. ~/.ssh/id_rsa,
a private key, has full permissions for the user, but no permissions for anyone else. ~/.ssh/id_rsa.pub is
readable by everyone, and also writable by the group.

We can change the permissions on a file (a directory is just a type of file) using chmod. Here are some options:

Option Meaning

utrwx Add read, write, and execute perms for the user
g+rwx The same, for the group

o+rwx The same, for others

0-W Removed write permissions for others

go-rwx Remove all permissions for the group and others
ugo+x Add execute perms for all users

a+x The same as the previous

700 Set the permissions to -rwx——

655 Set the permissions to -rwxr-xr-x

-R Apply the permissions recursively, when given a directory

The numeric versions set permissions exactly, and use octal to specify the bits (1=x, 2=w, 4=r) in the
order (user, group, other). After writing a lot of scripts, chmod a+x <file> will become part of your muscle
memory.

You can also change the ownership of files, using chown. The syntax is
chown <user>:<group> <file>

When you run things as root, you often have to run this (using sudo) to fix the file ownership. As with
chmod, you can provide -R to change ownership recursively.

Disk Usage

These will let you figure out how much space is used/available, and where that used space is.

Command Result

df Display statistics for all mounted filesystems

df dir Display statistics for the filesystem on which dir is mounted
df -h Use friendly units for sizes

du dir Count the disk usage for the specified directory and subdirs

Command Result

du -s Only show the total usage, not the subdir breakdown
du -h Use friendly units for sizes

Special Files

Most executables live in /bin, /usr/bin, or /usr/local/bin

Most libraries (static or shared) live in /lib, /usr/lib, or /usr/local/lib
Configuration files generally live in /etc

Temporary files generally live in /tmp, which is often flushed on shutdown
Device files live in /dev, and a couple of these are worth note:

o /dev/null contains nothing, and is often used as a target for output that should be discarded
o /dev/zero will produce as many null bytes as you care to read

Process files live in /proc, in subdirectories named with process IDs (PIDs). Also of possible interest in /proc
(somewhat-readable ASCII files):

« /proc/cpuinfo
e /proc/meminfo
o /proc/stat

o /proc/vmstat

Finding Things

Being able to find something specific is extremely useful. Here are some tools to do this:

e locate <name> — Given name, find indexed files containing name as a substring; relies on updatedb
having been run since the file was added.

e find <dir> ... — Starting in dir, find files matching a set of specifiers. More on this below.

e grep <pattern> <files> — Find lines in files matching pattern. More on this below.

e ack <pattern> [<dir>] — Like grep, but faster when searching large directories. Most systems don’t
have this installed by default.

grep can take regular expressions, and can operate recursively on directories, though it tends not to be
particularly efficient when doing so. Here are some options (there are many more):

Option Meaning

-E Interpret pattern as an extended regular expression

-r Recursively grep directories

-An Include n lines of context after a matching line

-Bn Include n lines of context before a matching line

-Cn Include n lines of context before and after a matching line
-H Prepend matching lines with the name of the file

-i Ignore case in matches

-1 Only print the names of files with matches

-L Only print the names of files without matches

-n Prepend the matching line number

-q Don’t print matches, just return 0 (match) or -1 (no match)
-V Match lines not including pattern

find has a lot of options, far too many to go into detail here. Some of the more useful ones:

Option Meaning

-name n Match files containing n

-iname n Case-insensitive version of -name

-type t Match files of type t (f=normal file, d=directory, etc.)
-depth d Limit the depth of the search

-size s Match files with size matching s, like 10, 20k, 32M, etc.
-size -$ Match files smaller than s

-size +s Match files larger than s

-newer f Match files modified more recently than file f

-mtime ¢ Match files modified within time ¢, default unit days

Also, -t or +t

-ctime and -atime do same thing for file creation and access
-print Print the name of a matched file (default)
-Is Print 1s -1-like lines for matching files
-exec ... Execute a command on matches (see below)

-delete Removes files and directories - USE WITH EXTREME CAUTION

For matches, the order can matter, especially for performance. You want to run -exec as late in the filtering
process as possible, for example, since it runs an external program for each file.

-exec is very powerful, because it allows you to extend find’s already-considerably functionality. Here’s an
illustrative example:

find . -name *.txt -exec grep -H foo {} \;

This will start from the current directory, match all files ending in “txt”, and run grep on them. The string
“{}” is replaced with the name of the current match. The -exec command must be terminated with “;”,
regardless of whether any other commands are provided. This is essentially the same as:

grep —-include *.txt -Hr foo .

	Linux Filesystem Quick-Reference
	Directory Contents with ls
	Moving Around
	File Permissions
	Disk Usage
	Special Files
	Finding Things

