Linux System Administration

If you're just getting started with administrative commands, tread carefully! There’s a lot you can screw up
accidentally. If you're reading this to fix the problem of not being able to access a shared folder, go ahead
and skip to the very end, but then come back and read the rest later.

Root

This is the normal administrative account; it has privileges which allow it to do nearly anything on the host.
As such, when running as the root user, you need to be very careful about what you do. It is also called the
“supervisor” or “superuser” account.

On older systems, there was typically a password for the root account, and you would open a shell as the
root user (or login to the system) using this password. The su command is what you would use if you were
already logged into the system as a normal user, and wanted to “become root”. We still use su occasionally,
but we use it slightly differently, as we’ll see later.

Now, it’s more common for root not to have a password, so we have to have another way to become root. For
this, we have the sudo command. Here’s how it works:

vmuser@f18marsh:~$ wc -c /var/log/tallylog

wc: /var/log/tallylog: Permission denied
vmuser@f18marsh:~$ sudo wc -c /var/log/tallylog
64128 /var/log/tallylog

If you haven’t run sudo recently, it will prompt you for your password. This is because you’ve been granted
special permission to call sudo in the file /etc/sudoers

vmuser@f 18marsh:~$ groups

vmuser adm cdrom sudo dip plugdev lpadmin sambashare wireshark docker vboxsf
vmuser@f18marsh:~$ grep Ysudo /etc/sudoers

/etc/sudoers: Permission denied

vmuser@f18marsh:~$ sudo grep %sudo /etc/sudoers

%sudo ALL=(ALL:ALL) ALL

Let’s unpack this. First we list all of the permissions groups to which we belong. One of these is named sudo.
If we look for this group (which is what prepending % denotes) in the file /etc/sudoers, we see that there’s
a matching line. However, along the way we discover that /etc/sudoers is itself only readable by root, so
we have to use sudo to run grep over the file!

What does the line in /etc/sudoers mean? Here it is again:
hsudo ALL=(ALL:ALL) ALL

If we run man sudoers, we can see all of the documentation, but we’ll cut to the chase. First, %sudo means
this is a rule for the permission group sudo, of which we happen to be a member. If you leave off the %, then
this would match on username instead.

Next, we have the hosts on which this is valid, since this file might be shared between a number of similarly
configured hosts. In this case, we use the wildcard ALL. So far we have

Y%sudo ALL

to indicate that on all hosts, the group sudo will have the specified permissions. After the =, we see (ALL:ALL).
This says that we're allowed to run as any user or group. We could have restricted this to (man:tape) if
we wanted to grant this user or group permission to run as the man user (which can install or rebuild the
database of manual pages) or the tape group (for access to a tape drive).

Finally, the last ALL says that when running as the provided user or group, we’re allowed to run any command.

Running as Another User

The easiest way to run as another user is to use the —u option to sudo:

vmuser@fi18marsh:~$ whoami

vmuser

vmuser@fi18marsh:~$ sudo -u man whoami
man

Since you can run any command you like, you could also use this to start a shell:

vmuser@fi18marsh:~$ sudo -u man /bin/bash
man@f 18marsh:~$ whoami

man
man@f18marsh:~$ exit
exit
vmuser@f18marsh:~$

One thing that’s important to note, however, is that each shell has an environment, which defines things like
the directory path to search for executables, special options to pass certain programs, etc. Sometimes you
don’t want to carry the environment over to the new shell, but rather have the shell initialized as if the target
user had just logged in. For this, we can use the -i flag. Compare the output of the following on your VM:

sudo /usr/bin/env
sudo -i /usr/bin/env

This can be very important in some circumstances, and often when starting a root shell, you’ll want to include
the -i flag. The following two commands end up being equivalent:

sudo -i /bin/bash
sudo su -

Here, the - option to su says to treat this as a login shell, just like sudo -i.

Managing Users and Groups

We’re going to consider just a couple of things here: changing passwords and assigning users to groups. These
should be the bulk of what you need to do.

To change your own password, run:

vmuser@f 18marsh:~$ passwd
Changing password for vmuser.
(current) UNIX password:

You are prompted for your current password, then for the new password, and finally for the new password
again, just to make sure you typed it correctly.

When run as root, you can change another user’s password:

vmuser@f18marsh:~$ sudo passwd man
Enter new UNIX password:

Now you’re only prompted for the new password, not the current one. This is because you’re running it as
the superuser.

We saw the groups command earlier, which lists your current groups. You can switch your currently active
group (which on our VM defaults to vmuser) by running newgrp:

vmuser@fi18marsh:~$ echo $GROUPS
1000

vmuser@f18marsh:~$ newgrp docker
vmuser@f18marsh:~$ echo $GROUPS
124

It is important to note that when you run newgrp, you open a new shell. That means your shell history will
be gone, until you exit from that shell and return to your previous shell (and group).

Most of the time, you will not need to change your active group, but you might need to change the list of
groups to which you belong. For this, you run the vigr command (as root):

sudo vigr
In particular, consider the following line at the bottom of the file:
vboxsf:x:999:

If you see this line, it means the vmuser account will not be able to access shared folders. We can fix this by
changing the line to:

vboxsf:x:999:vmuser

Now, when we save and quit, we’ll see a message telling us to run vigr -s, which edits the shadow copy of
the file. This is a security feature that hides some of the group details from the /etc/group file. Run:

sudo vigr -s
and make the same change:
vboxsf:!::vmuser

At this point, you will have to log out of your VM and back in (you don’t need to restart it, though that will
also work), and you’ll now have access to shared folders!

	Linux System Administration
	Root
	Running as Another User
	Managing Users and Groups

