Bash Quick-Reference

The bash man page is very long and detailed, with the result that it can be difficult to find what you’re
looking for in it.

Variables

There are many shell variables that can come in handy, both interactively and in scripts. We typically write
them with a dollar sign in front, because that is how they are referenced (but not set!).

Variable Contents

$$ Current process (shell) PID

$! PID of last subprocess started in the background
$? Return value of the last completed subprocess

$0 Name with which the shell /script was invoked
$1, $2, ... Positional parameters to the shell/script

S+ Number of positional parameters to shell/script
$@ Positional parameters, expanded as separate words
$* Positional parameters, expanded as a single word
$HOME The current user’s home directory

$OLDPWD The previous working directory (see “cd -”)
$PATH The directories searched for commands

$PPID The PID of the shell/script’s parent process
$PWD The current working directory

$RANDOM A random int in the range [0,32767]

$EUID The current effective user numeric ID

$UID The current user numeric 1D

$USER The current username

You set a variable with
my_var=123

Referencing variables is done with a dollar sign, but there is more than one way to do this. These are
equivalent:

$HOME
${HOME}

Why would we use the longer version? Try the following:

for f in *; do echo $f0; done

Now try:

for f in *; do echo ${f}0; done

The braces give us considerable more control, and some extra features, as we’ll see.

It is also possible to set variables for a single command. There are two ways to do this:

/usr/bin/env a=foo my_command
a=foo my_command

Both of these set the variable a to the value foo, but only for the environment seen by my_command. This is
used frequently to override default variables without changing them:

JAVA_HOME=${HOME}/my_java some_java_program
LD_LIBRARY_PATH=${HOME}/build/lib my_c_program

By convention, script-local variables are lowercase, and more global variables (like HOME) are uppercase.

Subprocesses typically don’t get passed the variables you define. To change this, you need to export the
variable:

export PATH

Parameter Expansion

See the “Parameter Expansion” section of the bash manpage for more details and other expansion options.

Ezxpansion Effect

${#var} The length of var
${var:-def} war, if set, otherwise def
${var:=def} As above, but var will be set to def if not set
${var:off} Substring of var, beginning with character off
${var:o:1} As above, but at most [characters
${var/p/s} Expand var, replace pattern p with string s
If s not provided, remove the pattern
and % perform prefix and suffix matches

We can use this in a script along with variable overriding for handling script inputs symbolically, rather than
positionally:

${target:=foo.txt}
grep foobar ${target}

We would call this (assuming it’s called “myscript”):

target=/etc/hosts myscript

Quoting

How a language handles single- vs double-quotes varies quite a bit. Python treats them equivalently, while C
only allows a single character between single-quotes. Bash works a bit differently: single-quoted strings do
not have parameters expanded, while double-quoted strings do. For example, compare:

echo '${HOME}'
echo "${HOME}"

You will most often want double-quotes, but single-quotes are very useful when preparing input to another
program. For example:

find . -name '*.txt'
which is equivalent to

find . -name *.txt

Command Execution

There are multiple ways to do this. Consider an executable foo:

Invocation Effect

foo foo is run as a subprocess normally

foo & foo is run in the background, as execution continues

. foo foo is run in the current shell

(foo) a subshell is started, and foo is run as a subproc of it
“foo” foo is run as a subprocess, and its STDOUT is returned
$(fo0) Same as the above

The last two are equivalent, but the $() form is preferable, because it is clearer and can be nested.

The dot-execution is useful for snippets of bash code which set environment variables or define functions.
Think of it like an “include” statement.

The advantage of running in a subshell is that it doesn’t impact the current shell. Here’s an example:

for d in * # "x" expands to the contents of the current directory

do
if [-d $d] # Test that $d is a directory
then
(cd $d; git pull origin master)
fi
done

If we ran in the parent shell, we would have to make this longer:

cwd=$ (pwd)
for d in * # "x" expands to the contents of the current directory
do
if [-d $d] # Test that $d is a directory
then
cd $d
git pull origin master
cd $cwd
fi
done

We could use . . instead of $cwd, but then we’d have to worry about cd $d failing. With a subshell, we don’t
need to worry about this at all.

Working with Positional Parameters

Sometimes, $* or $Q@Q are good enough:

foo $x* # Pass all parameters to this other command
for a in $*; do ... # Loop over the parameters

If the parameters have different meanings, we can do the following:

a=$1
b=$2

We can make this more robust, with defaults:

a=${1:-foo}
b=${2:-bar}

We can also use shift, which pops the first positional parameter:

a=$1
shift
b=$1
shift

or, more compactly:

a=$1; shift
b=$1; shift

The advantage of the $1; shift form is that we can add more positional parameters without having to keep
count. We’ll see other uses later.

Mathematical Expressions

Many mathematical operations can be put in $(()). This will only perform integer math, however. Here’s an
example:

total=0
for thing in $*
do
total=$((${total} + ${#thing}))
done
echo ${total}

This will sum the lengths of the positional parameters, and print the result to STDOUT.

For floating-point math, we have to use other options (such as awk).

File Descriptors

There are three automatic file descriptors (in addition to any files your program opens):

File Descriptor Meaning

STDIN 0 Standard input, reading from the terminal
STDOUT 1 Standard output, writing to the terminal
STDERR 2 Standard error, writing to the terminal

The normal thing for a program to do is read from STDIN and write to STDOUT. Many programs will also
write to STDERR, but if all you have is the terminal, it’s hard to tell STDOUT from STDERR. However,
the shell still knows, and lets us treat these differently. Here’s an example. First, try:

grep bash /etc/*
Now, try this:
grep bash /etc/* 2>/dev/null

The second form told the shell that STDERR (2) should be redirected to (>) the special file /dev/null. We
could also do:

grep bash /etc/* 2>/dev/null >bash_in_etc

You shouldn’t see any output now, but take a look at the new file bash_in_etc. If unspecified, output
redirection applies to STDOUT.

We can also merge STDOUT and STDERR:

grep bash /etc/* 2>&1

Here, we’ve specified the redirection target as &1, which means “whatever file descriptor 1 points to”.
To append, instead of overwriting, we can use “>>" instead of “>".

We can also redirect STDIN, by using “<”:

wc -1 <bash_in_etc # This counts the number of lines in the file

Here Documents

There’s a special form of input redirection, using “<<”:

wc <<EOFWC
this

is

a

test

EOFWC

The string “EOFWC” is arbitrary, but “EOF” is fairly common. We can also pass a single string as STDIN
with “<<<™

wc <<<"this is a test"

Pipelines

The Unix philosophy is that a given tool should do one thing, and if you have to do multiple things, you
should compose different tools. Pipelines are the shell’s way to do this. In short:

foo | bar | baz

takes STDOUT from foo, redirects that to the STDIN of bar, and redirects bar’s STDOUT to baz’s STDIN.

You should become comfortable with this pattern, because it is one of the keys to creating powerful scripts.
We can also combine with other things we’ve seen:

echo "grep produced $(grep bash /etc/* 2>&1 >/dev/null | wc -1) errors"

Control Flow

The simplest form of control flow uses boolean operators to combine commands

Combination Ezecution

foo ; bar Execute foo, then execute bar
foo &% bar Execute foo; if successful execute bar
foo || bar Execute foo; if not successful execute bar

The return status is always the status of the last command executed.
Bash has an if/then/elif/else/fi construction. The minimal version is if/then/fi, as in:

if $foo
then
echo "foo"

fi
The full form would be:

if $foo
then

echo "foo"
elif $bar
then

echo "bar"
else

echo "baz"
fi

The if statement uses command return codes, so you can put a command in the test, or use the test command
(usually written [):

grep foo /etc/hosts
have_foo0=%7
grep localhost /etc/hosts
have_local=$7
if [0 -eq ${have_foo}]
then

echo "We have foo"
elif [0 -eq ${have_locall} 1]
then

echo "We have localhost"
fi

See the test manpage for details; there are many tests you can perform, and the manpage is fairly compact.

We can also construct loops in bash, as we’ve already seen briefly. There are “for” loops and “while” loops,
and they behave as you’d expect. Both have the format:

<for or while>
do

...
done

A “for” statement looks like
for loop_var in <sequence>

Sequence can be something like “x” or”a $b $c¢”, or $(Is /etc). If you want to iterate over numbers, you can
do something like

for loop_var in $(seq 10)
do

echo "foo${loop_var}"
done

The while statement takes a conditional, much like if. We can loop indefinitely with it:

while true
do
...
if $condition
then
break
fi

done
Finally, bash has a case statement:

case ${switch_var} in
foo) echo "foo";;
bar|baz) echo "bar"; echo "baz";;
*) echo "default";;

esac

Let’s combine this for command-line argument parsing;:

a="foo"
b="bar"
C=" n
while [$# -gt 0]
do
case $1 in
-a) shift; a=$1; shift;;
-b) shift; b=$1; shift;;
*) c="$c $1"; shift;;
esac
done

Functions

Defining a function:

function my_func {
local a=$1
echo $a

}

Functions begin with the function keyword, then a name, and then the body of the function, in curled
braces. The local keywords defines a variable in the function’s scope. If not used, the variable will be defined
in the global scope, and hence visible outside of the function. Positional parameters are redefined for the
function’s scope.

Once defined, the function behaves like any other command:
my_func "hello"

You can define particularly useful functions in your ~/.bashre, which will be executed (using .) whenever you
start a new shell.

Aliases

Common one-liners are often nice to put into simple aliases, which are defined like:
alias 1ls='ls -FC'
Here are some aliases I find useful:

alias 1s='ls -FC'
alias la='ls -A'
alias 11='ls -1'
alias ltr='ls -1ltr'
alias 1lsd='ls -1sd'

These are defined in my ~/.bashrc. There’s also a file called either ~/.bash_ profile or ~/.profile, which is only
run for a login shell (that is, only once when you first log in). When you modify one of these files, make sure
you re-dot them

. ~/.bashrc
~/.bash_profile
~/.profile

Scripting

Some principles I live by:

1. If 'm going to do something more than once, I script it.
2. If T do something once, there’s a good chance I'm going to have to do it again.

Most shells, bash included, treat executable text files specially. Given no other information, they run them as
scripts for the current shell. Do not assume that file extensions mean anything. At the very least, bash does
not care about the name of your file, it only cares about the content. Naming a file foo.py does not mean
bash will treat it as a python file, for instance.

To run the script correctly, there’s an easy way and a hard way. The hard way is to call the appropriate
interpreter explicitly:

bash my_shell_script.sh
python my_python_script.py

The easy way is to use a convention called shebang (short for “hash-bang”). The shell will look at the first line
of an executable ASCII file. If that line begins with a shebang, the arguments to that provide the program
with which to run the script:

#! /bin/bash

You can even provide options:

#! /bin/bash -x

For python, there’s a better way to call it:
#! /usr/bin/env python

What does this do? We’re not actually invoking python directly. Instead, we invoke env, which passes the
parent environment. In particular, this means it’s also using the parent shell’s $PATH variable to determine
how to find python. This has a couple of advantages:

e The location of python may vary from installation to installation, but env’s location is always predictable.
o If you use python virtual environments, this will pick up your virtualenv python.

As a final note, make sure your scripts are executable! See “chmod” in the filesystems quick-ref for details,
but 99 times out of 100, you will want to run chmod a+x on your script. git keeps track of file permissions in
addition to the contents.

	Bash Quick-Reference
	Variables
	Parameter Expansion
	Quoting
	Command Execution
	Working with Positional Parameters
	Mathematical Expressions
	File Descriptors
	Here Documents
	Pipelines
	Control Flow
	Functions
	Aliases
	Scripting

