
Numeric Representations

Integer Type Sizes

We are used to thinking of a byte as 8 bits (which isn’t strictly true, but is almost always the case), but larger
sizes become more ambiguous.

It used to be the case (when 32-bit processors were dominant) that an int in C would be 4 bytes (32 bits), a
short int would be 2 bytes, and a long int would be 8 bytes. All of these are signed quantities. unsigned
int is the corresponding non-negative 4-byte integer value.

With most processors now being 64-bit, these have shifted somewhat. Now an int might be 8 bytes, though
short and long may or may not be twice as long. In many programs, we don’t really care, but when we’re
encoding numbers, this becomes very important.

The header file stdint.h contains the following types, which you should use when you want to ensure the
size of the value in bytes:

Type Size (bytes) Signed/Unsigned
int8_t 1 signed
int16_t 2 signed
int32_t 4 signed
int64_t 8 signed
uint8_t 1 unsigned
uint16_t 2 unsigned
uint32_t 4 unsigned
uint64_t 8 unsigned

Byte Encoding

Numbers have to be stored in memory on a host. They also have to be saved in files and sent over the
network. This seems simple, but how a number is stored is more complicated than you might expect.

While a single-byte integer value is easy (“10” is “0A” in hex), once you have more than one byte, you have
to consider the specific architecture. There are two main architectures commonly used: big endian (BE) and
little endian (LE). In big endian encoding, the most significant byte of the number comes first in memory. In
little endian encoding, the least significant byte come first.

Some examples might help:

Number Size (bytes) BE LE
12 2 00 0C 0C 00

3072 2 0C 00 00 0C
4660 2 12 34 34 12
13330 2 34 12 12 34
12 4 00 00 00 0C 0C 00 00 00

201326592 4 0C 00 00 00 00 00 00 0C

Host and Network Byte Order

The host’s architecture specifies the host byte order, but when exchanging values over the network, we can’t
have architecture-dependent ambiguity. Consequently, the networking community decided on big endian as

1



the standard network byte order.

Because of this, if we receive a 4-byte integer value 0000000C, we can safely assume these bytes represent the
number 12, not 201326592, regardless of how our host interprets this sequence of bytes.

Converting Between Encodings

The C standard library has a number of functions to handle conversions between BE and LE encoding. Other
languages have their own mechanisms, which you can look up if you need them. Here is a summary (header
files might vary from system to system):

Function Size (bytes) Input Encoding Output Encoding Header
htons 2 host network arpa/inet.h
ntohs 2 network host arpa/inet.h
htonl 4 host network arpa/inet.h
ntohl 4 network host arpa/inet.h

htobe16 2 host big endian endian.h
htole16 2 host little endian endian.h
be16toh 2 big endian host endian.h
le16toh 2 little endian host endian.h
htobe32 4 host big endian endian.h
htole32 4 host little endian endian.h
be32toh 4 big endian host endian.h
le32toh 4 little endian host endian.h
htobe64 8 host big endian endian.h
htole64 8 host little endian endian.h
be64toh 8 big endian host endian.h
le64toh 8 little endian host endian.h

2


	Numeric Representations
	Integer Type Sizes
	Byte Encoding
	Host and Network Byte Order
	Converting Between Encodings


